Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 5(8): e2000427, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33987968

RESUMO

Alveolar-capillary basement membrane (BM) is ultra-thin (<2 µm) extracellular matrix that maintains integral epithelial-endothelial cell layers. In vitro reconstructions of alveolar-capillary barrier supported on synthetic scaffolds closely resembling the fibrous and ultra-thin natural BM are essential in mimicking the lung pathophysiology. Although BM topology and dimensions are well known to significantly influence cellular behavior, conventionally used BM mimics fail to recreate this natural niche. To overcome this, electrospun ultra-thin 2 µm poly(caprolactone) (PCL) nanofibrous mesh is used to establish an alveolar-capillary barrier model of lung endothelial/epithelial cells. Transepithelial electrical resistance (TEER) and permeability studies reveal integral tight junctions and improved mass transport through the highly porous PCL meshes compared to conventional dense membranes with etched pores. The chemotaxis of neutrophils is shown across the barrier in presence of inflammatory response that is naturally impeded in confined regions. Conventional requirement of 3 µm or larger pore size can lead to barrier disruption due to epithelial/endothelial cell invasion. Despite high porosity, the interconnected BM mimic prevents barrier disruption and allows neutrophil transmigration, thereby demonstrating the physiological relevance of the thin nanofibrous meshes. It is envisioned that these bipolar cultured barriers would contribute to an organ-level in vitro model for pathological disease, environmental pollutants, and nanotoxicology.


Assuntos
Capilares , Células Endoteliais , Membrana Basal , Matriz Extracelular , Junções Íntimas
2.
Biosens Bioelectron ; 165: 112345, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32513645

RESUMO

We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel®, and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Células CACO-2 , Impedância Elétrica , Células Epiteliais , Humanos
3.
Small ; 15(33): e1901356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31168917

RESUMO

Two-photon vertical-flow lithography is demonstrated for synthesis of complex-shaped polymeric microtubes with a high aspect ratio (>100:1). This unique microfluidic approach provides rigorous control over the morphology and surface topology to generate thin-walled (<1 µm) microtubes with a tunable diameter (1-400 µm) and pore size (1-20 µm). The interplay between fluid-flow control and two-photon lithography presents a generic high-resolution method that will substantially contribute toward the future development of biocompatible scaffolds, stents, needles, nerve guides, membranes, and beyond.


Assuntos
Impressão/métodos , Materiais Biocompatíveis , Fótons , Polímeros , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...