Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(3): e3002503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478490

RESUMO

Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the µm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.


Assuntos
Técnicas de Cultura de Células , Microtecnologia , Microfluídica/métodos , Impressão Tridimensional , Dispositivos Lab-On-A-Chip
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217605

RESUMO

The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2RW/+ and Dnm2RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2RW/+ mice and rescued the perinatal lethality and survival of Dnm2RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/fisiologia , Atrofia Muscular/fisiopatologia , Doenças Musculares/patologia , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...