Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 44: 103816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783257

RESUMO

CONTEXT: Old-generation photosensitizers are minimally used in current photodynamic therapy (PDT) because they absorb in the UV/blue/green region of the spectrum where biological tissues are generally highly absorbing. The UV/blue light of Cherenkov Radiation (CR) from nuclear disintegration of beta-emitter radionuclides shows promise as an internal light source to activate these photosensitizers within tissue. Outline of the study: 1) radionuclide choice and Cherenkov Radiation, 2) Photosensitizer choice, synthesis and radiolabeling, 3) CR-induced fluorescence, 4) Verification of ROS formation, 5) CR-induced PDT with either free eosine and free CR emitter, or with radiolabelled eosin. RESULTS: Cherenkov Radiation Energy Transfer (CRET) from therapeutic radionuclides (90Y) and PET imaging radionuclides (18F, 68Ga) to eosin was shown by spectrofluorimetry and in vitro, and was shown to result in a PDT process. The feasibility of CR-induced PDT (CR-PDT) was demonstrated in vitro on B16F10 murine melanoma cells mixing free eosin (λabs = 524 nm, ΦΔ 0.67) with free CR-emitter [18F]-FDG under their respective intrinsic toxicity levels (0.5 mM/8 MBq) and by trapping singlet oxygen with diphenylisobenzofuran (DPBF). An eosin-DOTAGA-chelate conjugate 1 was synthesized and radiometallated with CR-emitter [68Ga] allowed to reach 25 % cell toxicity at 0.125 mM/2 MBq, i.e. below the toxicity threshold of each component measured on controls. Incubation time was carefully examined, especially for CR emitters, in light of its toxicity, and its CR-emitting yield expected to be 3 times as much for 68Ga than 18F (considering their ß particle energy) per radionuclide decay, while its half-life is about twice as small. PERSPECTIVE: This study showed that in complete darkness, as it is at depth in tissues, PDT could proceed relying on CR emission from radionuclides only. Interestingly, this study also repurposed PET imaging radionuclides, such as 68Ga, to trigger a therapeutic event (PDT), albeit in a modest extent. Moreover, although it remains modest, such a PDT approach may be used to achieve additional tumoricidal effect to RIT treatment, where radionuclides, such as 90Y, are strong CR emitters, i.e. very potent light source for photosensitizer activation.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Radioisótopos de Gálio , Amarelo de Eosina-(YS) , Radioisótopos
2.
Chem Asian J ; 18(22): e202300756, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37811909

RESUMO

The rational design of activatable photosensitizers (aPSs) uncaged by specific disease biomarkers is currently booming due to their positive attributes to achieve targeted photodynamic therapy (PDT). In this context, we present here the synthesis and detailed photophysical characterization of a novel class of hetero-rosamine dyes bearing sulfur or selenium as bridging heavy atom and 4-pyridyl meso-substituent as optically tunable group. The main feature of such photoactive platforms is the spectacular change of their spectral properties depending on the caging/decaging status of their 4-pyridyl moiety (cationic pyridinium vs. neutral pyridine). The preparation of two alkaline phosphatase (ALP)-responsive probes (named Valkyrie probes) was achieved through formal N-quaternarization with 4-phosphoryloxybenzyl, the traditional recognition moiety for this important diagnostic enzyme. Bio-analytical validations including fluorescence/singlet oxygen phosphorescence enzyme assays and RP-HPLC-fluorescence/-MS analyses have enabled us to demonstrate the viability and effectiveness of this novel photosensitizer activation strategy. Since sulfur-containing Valkyrie probe also retains high fluorogenicity in the orange-red spectral range, this study highlights meso-pyridyl-substituted S-pyronin scaffolds as valuable candidates for the rapid construction of molecular phototheranostic platforms suitable for combined fluorescence diagnosis and PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Rodaminas , Enxofre
3.
Photochem Photobiol Sci ; 22(2): 303-309, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36201159

RESUMO

A poly-cationic theranostic macrocycle was developed to perform confocal microscopy imaging and photodynamic therapy studies on a model of melanoma cancer, one of the most aggressive cancer. Hence, an octa-imidazolium zinc phthalocyanine was conveniently synthesized in large amount in three steps in a 44% overall yield: upon double nucleophilic aromatic substitution, cyclo-tetramerization and quaternization reactions. Such an octa-cationic molecule was readily soluble in physiological media, reaching concentrations beyond 1 mM. It showed fluorescence properties in aqueous medium (ΦF = 0.31) with no noticeable aggregation, spectroscopy studies showed. In vitro confocal fluorescence microscopy studies carried out on murine melanoma model (B16F10 cells) showed that the fluorophore was mainly located in the cell nucleolus, an organelle of interest for the treatment of cancer. The anticancer photodynamic potential of the octa-cationic photosensitizer could be measured (IC50 = 5.4 µM) using the MTS viability assay. Both fluorescence microscopy studies and photodynamic studies demonstrate the octa-cationic molecule is theranostic and could be further developed for future photodynamic diagnosis (PDD) and photodynamic inactivation of micro-organisms (PDI).


Assuntos
Melanoma , Compostos Organometálicos , Fotoquimioterapia , Humanos , Animais , Camundongos , Nucléolo Celular , Água , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Microscopia de Fluorescência
4.
J Med Chem ; 63(17): 9446-9456, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32706253

RESUMO

Cherenkov radiation (CR), the blue light seen in nuclear reactors, is emitted by some radiopharmaceuticals. This study showed that (1) a portion of CR could be transferred in the region of the optical spectrum, where biological tissues are most transparent: as a result, upon radiance amplification in the near-infrared window, the detection of light could occur twice deeper in tissues than during classical Cherenkov luminescence imaging and (2) Cherenkov-photodynamic therapy (CR-PDT) on cells could be achieved under conditions mimicking unlimited depth using the CR-embarked light source, which is unlike standard PDT, where light penetration depth is limited in biological tissues. Both results are of utmost importance for simultaneous applications in tumor resection and post-resection treatment of remaining unresected margins, thanks to a molecular construct designed to raise its light collection efficiency (i.e., CR energy transfer) by conjugation with multiple CR-absorbing (water-soluble) antenna followed by intramolecular-FRET/TBET energy transfers.


Assuntos
Raios Infravermelhos , Luminescência , Imagem Óptica , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo
5.
Bioorg Med Chem ; 26(2): 413-420, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29254896

RESUMO

Fluorescent Probes aimed at absorbing in the blue/green region of the spectrum and emitting in the green/red have been synthesized (as the form of dyads-pentads), studied by spectrofluorimetry, and used for cellular imaging. The synthesis of phthalocyanine-pyrene 1 was achieved by cyclotetramerization of pyrenyldicyanobenzene, whereas phthalocyanine-BODIPY 2c was synthesized by Sonogashira coupling between tetraiodophthalocyanine and meso-alkynylBODIPY. The standard four-steps BODIPY synthesis was applied to the BODIPY-pyrene dyad 3 starting from pyrenecarbaldehyde and dimethylpyrrole. 1H, 13C, 19F, 11BNMR, ICP, MS, and UV/Vis spectroscopic analyses demonstrated that 2c is a mixture of BODIPY-Pc conjugates corresponding to an average ratio of 2.5 BODIPY per Pc unit, where its bis, tris, tetrakis components could not be separated. Fluorescence emission studies (µM concentration in THF) showed that the design of the probes allowed excitation of their antenna (pyrene, BODIPY) in the blue/green region of the spectrum, and subsequent transfer to the acceptor platform (BODIPY, phthalocyanine) followed by its emission in the green/red (with up to 140-350 nm overall Stokes shifts). The fluorescent probes were used for cellular imaging of B16F10 melanoma cells upon solubilization in 1% DMSO containing RPMI or upon encapsulation in liposomes (injection method). Probes were used at 1-10 µM concentrations, cells were fixed with methanol and imaged by biphoton and/or confocal microscopy, showing that probes could achieve the staining of cells membranes and not the nucleus.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Indóis/química , Melanoma/diagnóstico , Pirenos/química , Animais , Corantes Fluorescentes/síntese química , Isoindóis , Camundongos , Estrutura Molecular , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...