Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 975: 176644, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754535

RESUMO

Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid ß-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.


Assuntos
Autofagia , Chalconas , Hepatócitos , Metabolismo dos Lipídeos , Lipogênese , Camundongos Endogâmicos C57BL , Animais , Autofagia/efeitos dos fármacos , Chalconas/farmacologia , Lipogênese/efeitos dos fármacos , Masculino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Linhagem Celular , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia
2.
Int Immunopharmacol ; 130: 111665, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367463

RESUMO

Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 µM did not reduce HaCaT cell viability, and PUN ≥ 3 µM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 µM and ≥ 3 µM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.


Assuntos
Taninos Hidrolisáveis , Punica granatum , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Sirtuína 1/metabolismo , Interferon gama/metabolismo , Punica granatum/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Células HaCaT , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo
3.
Kaohsiung J Med Sci ; 40(3): 280-290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294255

RESUMO

Gypenoside XIII is isolated from Gynostemma pentaphyllum (Thunb.) Makino. In mice, G. pentaphyllum extract and gypenoside LXXV have been shown to improve non-alcoholic steatohepatitis (NASH). This study investigated whether gypenoside XIII can regulate lipid accumulation in fatty liver cells or attenuate NASH in mice. We used HepG2 hepatocytes to establish a fatty liver cell model using 0.5 mM oleic acid. Fatty liver cells were treated with different concentrations of gypenoside XIII to evaluate the molecular mechanisms of lipid metabolism. In addition, a methionine/choline-deficient diet induced NASH in C57BL/6 mice, which were given 10 mg/kg gypenoside XIII by intraperitoneal injection. In fatty liver cells, gypenoside XIII effectively suppressed lipid accumulation and lipid peroxidation. Furthermore, gypenoside XIII significantly increased SIRT1 and AMPK phosphorylation to decrease acetyl-CoA carboxylase phosphorylation, reducing fatty acid synthesis activity. Gypenoside XIII also decreased lipogenesis by suppressing sterol regulatory element-binding protein 1c and fatty acid synthase production. Gypenoside XIII also increased lipolysis and fatty acid ß-oxidation by promoting adipose triglyceride lipase and carnitine palmitoyltransferase 1, respectively. In an animal model of NASH, gypenoside XIII effectively decreased the lipid vacuole size and number and reduced liver fibrosis and inflammation. These findings suggest that gypenoside XIII can regulate lipid metabolism in fatty liver cells and improve liver fibrosis in NASH mice. Therefore, gypenoside XIII has potential as a novel agent for the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Gynostemma/química , Gynostemma/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Lipídeos/farmacologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Extratos Vegetais
4.
J Nutr Biochem ; 123: 109485, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844766

RESUMO

Myricetin, a flavonoid isolated from many edible vegetables and fruits, has multiple biological effects, including anti-inflammatory and anti-tumor effects. Myricetin could inhibit mast cell degranulation in vitro, and it reduced the eosinophil content in bronchoalveolar lavage fluid (BALF) of ovalbumin (OVA)-sensitized mice. However, it remains unclear whether myricetin alleviates airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthma. Here, we investigated whether myricetin attenuated AHR, airway inflammation, and eosinophil infiltration in lungs of asthmatic mice. Mice were sensitized with OVA, then injected intraperitoneally with myricetin to investigate anti-inflammatory and antioxidant effects of myricetin. Moreover, we examined its effects on human bronchial epithelial BEAS-2B cells stimulated with TNF-α and IL-4, in vitro. Myricetin effectively mitigated eosinophil infiltration, AHR, and goblet cell hyperplasia in lung, and it reduced Th2 cytokine expression in BALF from asthmatic mice. Myricetin effectively promoted glutathione and superoxide dismutase productions and mitigated malondialdehyde expressions in mice by promoting Nrf2/HO-1 expression. Myricetin also reduced the production of proinflammatory cytokines, eotaxins, and reactive oxygen species in BEAS-2B cells. Myricetin effectively suppressed ICAM-1 expression in inflammatory BEAS-2B cells, which suppressed monocyte cell adherence. These results suggested that myricetin could effectively improve asthma symptoms, mainly through blocking Th2-cell activation, which reduced oxidative stress, AHR, and airway inflammation.


Assuntos
Asma , Humanos , Animais , Camundongos , Ovalbumina/toxicidade , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Pulmão , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
5.
Kaohsiung J Med Sci ; 39(12): 1213-1221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819590

RESUMO

Mulberroside F is isolated from the leaves and roots of Morus alba L. Here, we investigated whether mulberroside F could alleviate airway inflammation and eosinophil infiltration in the lungs of asthmatic mice. We also examined whether mulberroside F attenuated inflammatory responses in human tracheal epithelial BEAS-2B cells. Female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and administered different doses of mulberroside F via intraperitoneal injection. Additionally, tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells were treated with various doses of mulberroside F, followed by detection of the expressions of inflammatory cytokines and chemokines. The results demonstrated that mulberroside F mitigated the levels of proinflammatory cytokines and chemokines, and CCL11, in inflammatory BEAS-2B cells. Mulberroside F also suppressed reactive oxygen species (ROS) production and ICAM-1 expression in TNF-α-stimulated BEAS-2B cells, which effectively suppressed monocyte cell adherence. In an animal model of asthma, mulberroside F treatment attenuated airway hyperresponsiveness, eosinophil infiltration, and goblet cell hyperplasia. Mulberroside F treatment also decreased lung fibrosis and airway inflammation in OVA-sensitized mice. Moreover, mulberroside F significantly reduced expressions of Th2-associated cytokines (including interleukin(IL)-4, IL-5, and IL-13) in bronchoalveolar lavage fluid compared to OVA-sensitized mice. Our results confirmed that mulberroside F is a novel bioactive compound that can effectively reduce airway inflammation and eosinophil infiltration in asthmatic mice via inhibition of Th2-cell activation.


Assuntos
Asma , Hipersensibilidade Respiratória , Feminino , Humanos , Animais , Camundongos , Ovalbumina/metabolismo , Ovalbumina/farmacologia , Ovalbumina/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Pulmão/patologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Citocinas/metabolismo , Quimiocinas/metabolismo , Inflamação/patologia , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
6.
Artigo em Inglês | MEDLINE | ID: mdl-35964244

RESUMO

BACKGROUND: Olive (Olea europaea Linn) leaves contain a phenolic compound oleuropein (Ole) has antioxidant, anti-inflammatory, and immunomodulatory activities. However, whether Ole might be an effective treatment for atopic dermatitis (AD) remains unknown. OBJECTIVE: This study investigated the functional role of oleuropein in a 2,4-dinitrochlorobenzene-induced AD-like mouse model, with a focus on allergic inflammation. METHODS: We evaluated cytokine gene expression, COX-2 inflammatory protein production, and Th2 related cytokine regulation of mast cells and eosinophils that infiltrated AD-like skin lesions. RESULTS: A topical application of Ole significantly reduced Th2-related cytokine gene expression (IL-4 and IL-5) and inflammatory COX-2 protein production in AD-like skin lesions. Additionally, Ole suppressed serum IgE levels. Furthermore, Ole effectively reduced ear swelling and epidermal and dermal thickening. CONCLUSIONS: These results suggested that, mechanistically, Ole treatment improved allergic inflammation by blocking the Th2-driven inflammatory axis. In conclusion, our findings indicated that Ole showed promise in treating AD by regulating serum IgE and Th2 cytokine levels. Although the effects of Ole on AD in humans require clinical trials, our results provided insights into how AD treatments might be improved.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35815275

RESUMO

Airway respiratory distress syndrome (ARDS) is usually caused by a severe pulmonary infection. However, there is currently no effective treatment for ARDS. Traditional Chinese medicine (TCM) has been shown to effectively treat inflammatory lung diseases, but a clear mechanism of action of TCM is not available. Perilla fruit water extract (PFWE) has been used to treat cough, excessive mucus production, and some pulmonary diseases. Thus, we propose that PFWE may be able to reduce lung inflammation and neutrophil infiltration in a lipopolysaccharide (LPS)-stimulated murine model. C57BL/6 mice were stimulated with LPS (10 µg/mouse) by intratracheal (IT) injection and treated with three doses of PFWE (2, 5, and 8 g/kg) by intraperitoneal (IP) injections. To investigate possible mechanisms, A549 cells were treated with PFWE and stimulated with LPS. Our results showed that PFWE decreased airway resistance, neutrophil infiltration, vessel permeability, and interleukin (IL)-6 and chemokine (C-C motif) ligand 2 (CCL2/MCP-1) expressions in vivo. In addition, the PFWE inhibited the expression of IL-6, CCL2/MCP-1, chemokine (CXC motif) ligand 1 (CXCL1/GROα), and IL-8 in vitro. Moreover, PFWE also inhibited the MAPK/JNK-AP-1/c-Fos signaling pathway in A549 cells. In conclusion, we demonstrated that PFWE attenuated pro-inflammatory cytokine and chemokine levels and downregulated neutrophil recruitment through the MAPK/JNK-AP-1/c-Fos pathway. Thus, PFWE can be a potential drug to assist the treatment of ARDS.

8.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887041

RESUMO

Our previous study found that oral administration of Gynostemma pentaphyllum extract can attenuate airway hyperresponsiveness (AHR) and reduce eosinophil infiltration in the lungs of asthmatic mice. Gypenoside A is isolated from G. pentaphyllum. In this study, we investigated whether gypenoside A can effectively reduce asthma in mice. Asthma was induced in BALB/c mice by ovalbumin injection. Asthmatic mice were treated with gypenoside A via intraperitoneal injection to assess airway inflammation, AHR, and immunomodulatory effects. In vitro, gypenoside A reduced inflammatory and oxidative responses in inflammatory tracheal epithelial cells. Experimental results showed that gypenoside A treatment can suppress eosinophil infiltration in the lungs, reduce tracheal goblet cell hyperplasia, and attenuate AHR. Gypenoside A significantly reduced Th2 cytokine expression and also inhibited the expression of inflammatory genes and proteins in the lung and bronchoalveolar lavage fluid. In addition, gypenoside A also significantly inhibited the secretion of inflammatory cytokines and chemokines and reduced oxidative expression in inflammatory tracheal epithelial cells. The experimental results suggested that gypenoside A is a natural compound that can effectively reduce airway inflammation and AHR in asthma, mainly by reducing Th2 cell activation.


Assuntos
Asma , Células Th2 , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Eosinófilos/metabolismo , Gynostemma , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Células Th2/metabolismo
9.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682783

RESUMO

Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.


Assuntos
Asma , Hipersensibilidade Respiratória , Sophora , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Eosinófilos/metabolismo , Feminino , Flavanonas , Inflamação/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Estresse Oxidativo , Hipersensibilidade Respiratória/metabolismo , Sophora/metabolismo
10.
Nutrients ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565807

RESUMO

Fisetin is isolated from many fruits and vegetables and has been confirmed to improve airway hyperresponsiveness in asthmatic mice. However, whether fisetin reduces inflammatory response and oxidative stress in bronchial epithelial cells is unclear. Here, BEAS-2B human bronchial epithelial cells were treated with various concentrations of fisetin and then stimulated with tumor necrosis factor-α (TNF-α) or TNF-α/interleukin-4. In addition, ovalbumin-sensitized mice were treated with fisetin to detect inflammatory mediators and oxidative stress expression. Fisetin significantly reduced the levels of inflammatory cytokines and chemokines in TNF-α-stimulated BEAS-2B cells. Fisetin also attenuated intercellular adhesion molecule-1 expression in TNF-α-stimulated BEAS-2B cells, suppressing THP-1 monocyte adhesion. Furthermore, fisetin significantly suppressed airway hyperresponsiveness in the lungs and decreased eosinophil numbers in the bronchoalveolar lavage fluid of asthmatic mice. Fisetin decreased cyclooxygenase-2 expression, promoted glutathione levels, and decreased malondialdehyde levels in the lungs of asthmatic mice. Our findings indicate that fisetin is a potential immunomodulator that can improve the pathological features of asthma by decreasing oxidative stress and inflammation.


Assuntos
Asma , Hipersensibilidade Respiratória , Animais , Asma/patologia , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Células Epiteliais/metabolismo , Flavonóis , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563076

RESUMO

We previously demonstrated that acacetin reduces adipogenesis in adipocytes, and decreases lipid accumulation in visceral adipocyte tissue. Here we investigated whether acacetin regulated the mechanisms of lipogenesis and inflammation in non-alcoholic fatty liver disease (NAFLD) in obese mice. Male C57BL/6 mice were fed a high-fat diet (HFD), and then administered acacetin by intraperitoneal injection. Acacetin reduced body weight and liver weight in obese mice. Acacetin-treated obese mice exhibited decreased lipid accumulation, increased glycogen accumulation, and improved hepatocyte steatosis. Acacetin regulated triglycerides and total cholesterol in the liver and serum. Acacetin decreased low-density lipoprotein and leptin concentrations, but increased high-density lipoprotein and adiponectin levels in obese mice. Acacetin effectively weakened the gene expressions of transcription factors related to lipogenesis, and promoted the expressions of genes related to lipolysis and fatty acid ß-oxidation in liver. Acacetin also reduced expressions of inflammation-related cytokines in the serum and liver. Oleic acid induced lipid accumulation in murine FL83B hepatocytes, and the effects of acacetin treatment indicated that acacetin may regulate lipid metabolism through the AMPK pathway. Acacetin may protect against hepatic steatosis by modulating inflammation and AMPK expression.


Assuntos
Flavonas , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Flavonas/farmacologia , Flavonas/uso terapêutico , Inflamação/metabolismo , Metabolismo dos Lipídeos , Lipogênese/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Triglicerídeos/metabolismo
12.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563088

RESUMO

Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a virus and is recognized by Toll-like receptor-3 (TLR3), inducing an inflammatory response in immune cells, such as macrophages. Inflammation is a natural defense process of the innate immune system. Therefore, we used poly(I:C)-induced RAW264.7 cells and attenuated the inflammation induced by urolithin A. First, our data suggested that 1-30 µM urolithin A does not reduce RAW264.7 cell viability, whereas 1 µM urolithin A is sufficient for antioxidation and the decreased production of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and C-C chemokine ligand 5. The inflammation-related proteins cyclooxygenase-2 and inducible nitric oxide synthase were also downregulated by urolithin A. Next, 1 µM urolithin A inhibited the levels of interferon (INF)-α and INF-ß. Urolithin A was applied to investigate the blockade of the TLR3 signaling pathway in poly(I:C)-induced RAW264.7 cells. Moreover, the TLR3 signaling pathway, subsequent inflammatory-related pathways, and antioxidation pathways showed changes in nuclear factor-κB (NF-κB) signaling and blocked ERK/mitogen-activated protein kinase (MAPK) signaling. Urolithin A enhanced catalase (CAT) and superoxide dismutase (SOD) activities, but decreased malondialdehyde (MDA) levels in poly(I:C)-induced RAW264.7 cells. Thus, our results suggest that urolithin A inhibits TLR3-activated inflammatory and oxidative-associated pathways in macrophages, and that this inhibition is induced by poly(I:C). Therefore, urolithin A may have antiviral effects and could be used to treat viral-infection-related diseases.


Assuntos
Cumarínicos , NF-kappa B , Receptor 3 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antioxidantes/farmacologia , Cumarínicos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Poli I-C/farmacologia , Células RAW 264.7 , RNA de Cadeia Dupla/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/metabolismo
13.
J Ginseng Res ; 45(6): 654-664, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764720

RESUMO

BACKGROUND: Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. METHODS: Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. RESULTS: Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. CONCLUSION: Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation.

14.
Mediators Inflamm ; 2021: 4544294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531702

RESUMO

Tomatidine, which is isolated from green tomato, can ameliorate inflammation and oxidative stress in cells and animal experiments and has been shown to improve airway inflammation in a murine model of asthma. Here, we investigated whether tomatidine can ameliorate acute lung injury in mice. Mice were given tomatidine by intraperitoneal injection for 7 consecutive days, and then, lung injury was induced via intratracheal instillation of lipopolysaccharide (LPS). Tomatidine reduced inflammatory cytokine expressions in bronchoalveolar lavage fluid (BALF), attenuated neutrophil infiltration in the BALF and lung tissue, increased superoxide dismutase activity and glutathione levels, and alleviated myeloperoxidase expression in the lung tissue of mice with lung injury. Tomatidine also decreased inflammatory cytokine and chemokine gene expression in inflammatory lungs and attenuated the phosphorylation of mitogen-activated protein kinase and nuclear factor kappa B. Furthermore, tomatidine enhanced the production of heme oxygenase-1, decreased the secretion of inflammatory cytokines and chemokines in LPS-stimulated lung epithelial cells, and attenuated THP-1 monocyte adhesion. Our findings suggest that tomatidine attenuates oxidative stress and inflammation, improving acute lung injury in mice.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Pneumonia/tratamento farmacológico , Tomatina/análogos & derivados , Células A549 , Animais , Líquido da Lavagem Broncoalveolar , Adesão Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Glutationa/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Subunidade p50 de NF-kappa B/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo , Peroxidase/biossíntese , Superóxido Dismutase/metabolismo , Tomatina/farmacologia
15.
Cells ; 10(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070405

RESUMO

Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.


Assuntos
Asma/tratamento farmacológico , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Hipersensibilidade Respiratória/tratamento farmacológico , Xantofilas , Animais , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/administração & dosagem , Xantofilas/farmacologia
16.
J Nutr Biochem ; 91: 108602, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548473

RESUMO

Tomatidine is isolated from the leaves and green fruits of some plants in the Solanaceae family, and has been reported to have anti-inflammatory and antitumor effects. Previous studies have found that tomatidine decreases hepatic lipid accumulation via regulation of vitamin D receptor and activation of AMP-activated protein kinase (AMPK) phosphorylation. However, whether tomatidine reduces weight gain and improves nonalcoholic fatty liver disease (NAFLD) remains unclear. In this study, we investigated how tomatidine ameliorates NAFLD in obese mice and evaluated the regulatory mechanism of lipogenesis in hepatocytes. Male C57BL/6 mice were fed a high-fat diet (HFD) to induce obesity and NAFLD, and treated with tomatidine via intraperitoneal injection. In vitro, FL83B hepatocytes were incubated with oleic acid and treated with tomatidine to evaluate lipid metabolism. Our results demonstrate that tomatidine significantly decreases body weight and fat weight compared to HFD-fed mice. In addition, tomatidine decreased hepatic lipid accumulation and improved hepatocyte steatosis in HFD-induced obese mice. We also found that tomatidine significantly regulated serum total cholesterol, fasting blood glucose, low-density lipoprotein, and triglyceride levels, but the serum high-density lipoprotein and adiponectin concentrations were higher than in the HFD-fed obese mice. In vivo and in vitro, tomatidine significantly suppressed the expression of fatty acid synthase and transcription factors involved in lipogenesis, and increased the expression of adipose triglyceride lipase. Tomatidine promoted the sirtuin 1 (sirt1)/AMPK signaling pathway to increase lipolysis and ß-oxidation in fatty liver cells. These findings suggest that tomatidine potentially ameliorates obesity and acts against hepatic steatosis by regulating lipogenesis and the sirt1/AMPK pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Tomatina/análogos & derivados , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Tomatina/uso terapêutico
17.
Mediators Inflamm ; 2020: 1702935, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343229

RESUMO

Helminthostachys zeylanica is a traditional folk herb used to improve inflammation and fever in Taiwan. Previous studies showed that H. zeylanica extract could ameliorate lipopolysaccharide-induced acute lung injury in mice. The aim of this study was to investigate whether H. zeylanica water (HZW) and ethyl acetate (HZE) extracts suppressed eosinophil infiltration and airway hyperresponsiveness (AHR) in asthmatic mice, and decreased the inflammatory response and oxidative stress in tracheal epithelial cells. Human tracheal epithelial cells (BEAS-2B cells) were pretreated with various doses of HZW or HZE (1 µg/ml-10 µg/ml), and cell inflammatory responses were induced with IL-4/TNF-α. In addition, female BALB/c mice sensitized with ovalbumin (OVA), to induce asthma, were orally administered with HZW or HZE. The result demonstrated that HZW significantly inhibited the levels of proinflammatory cytokines, chemokines, and reactive oxygen species in activated BEAS-2B cells. HZW also decreased ICAM-1 expression and blocked monocytic cells from adhering to inflammatory BEAS-2B cells in vitro. Surprisingly, HZW was more effective than HZE in suppressing the inflammatory response in BEAS-2B cells. Our results demonstrated that HZW significantly decreased AHR and eosinophil infiltration, and reduced goblet cell hyperplasia in the lungs of asthmatic mice. HZW also inhibited oxidative stress and reduced the levels of Th2 cytokines in bronchoalveolar lavage fluid. Our findings suggest that HZW attenuated the pathological changes and inflammatory response of asthma by suppressing Th2 cytokine production in OVA-sensitized asthmatic mice.


Assuntos
Asma/tratamento farmacológico , Citocinas/biossíntese , Eosinófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Hipersensibilidade Respiratória/tratamento farmacológico , Células Th2/imunologia , Traqueófitas , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Eosinófilos/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
18.
Front Immunol ; 11: 582838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193395

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2017.00134.].

19.
Cell Biosci ; 10: 114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014333

RESUMO

BACKGROUND: Phloretin is isolated from apple trees and could increase lipolysis in 3T3-L1 adipocytes. Previous studies have found that phloretin could prevent obesity in mice. In this study, we investigated whether phloretin ameliorates non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice, and evaluated the regulation of lipid metabolism in hepatocytes. METHODS: HepG2 cells were treated with 0.5 mM oleic acid to induce lipid accumulation, and then treated with phloretin to evaluate the molecular mechanism of lipogenesis. In another experiment, male C57BL/6 mice were fed normal diet or HFD (60% fat, w/w) for 16 weeks. After the fourth week, mice were treated with or without phloretin by intraperitoneal injection for 12 weeks. RESULTS: Phloretin significantly reduced excessive lipid accumulation and decreased sterol regulatory element-binding protein 1c, blocking the expression of fatty acid synthase in oleic acid-induced HepG2 cells. Phloretin increased Sirt1, and phosphorylation of AMP activated protein kinase to suppress acetyl-CoA carboxylase expression, reducing fatty acid synthesis in hepatocytes. Phloretin also reduced body weight and fat weight compared to untreated HFD-fed mice. Phloretin also reduced liver weight and liver lipid accumulation and improved hepatocyte steatosis in obese mice. In liver tissue from obese mice, phloretin suppressed transcription factors of lipogenesis and fatty acid synthase, and increased lipolysis and fatty acid ß-oxidation. Furthermore, phloretin regulated serum leptin, adiponectin, triglyceride, low-density lipoprotein, and free fatty acid levels in obese mice. CONCLUSIONS: These findings suggest that phloretin improves hepatic steatosis by regulating lipogenesis and the Sirt-1/AMPK pathway in the liver.

20.
Mediators Inflamm ; 2020: 9421340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122970

RESUMO

Cytokine-induced endothelial dysfunction leads to inflammation and vascular adhesion molecule production in retinal pigment epithelium (RPE) cells. Inflammation is a critical mediator in retinal degeneration (RD) diseases, including age-related macular degeneration (AMD), and RD progression may be prevented through anti-inflammatory activity in RPE cells. The flavonoid polyphenol luteolin (LU) has anti-inflammatory and antidiabetes activities, but its effects regarding retinal protection remain unknown. Here, we examined the ability of luteolin to alleviate markers of inflammation related to RD in cytokine-primed APPE-19 cells. We found that luteolin decreased the levels of interleukin- (IL-) 6, IL-8, soluble intercellular adhesion molecule-1 (sICAM-1), and monocyte chemoattractant protein-1 (MCP-1) and attenuated adherence of the human monocytic leukemia cell line THP-1 to IL-1ß-stimulated ARPE-19 cells. Luteolin also increased anti-inflammatory protein heme oxygenase-1 (HO-1) levels. Interestingly, luteolin induced protein kinase B (AKT) phosphorylation, thus inhibiting nuclear factor- (NF-) κB transfer from cytoplasm into the nucleus and suppressing mitogen-activated protein kinase (MAPK) inflammatory pathways. Furthermore, cotreatment with MAPK inhibitors and luteolin decreased inflammatory cytokine and chemokine levels, and further suppressed THP-1 adhesion. Overall, these results provide evidence that luteolin protects ARPE-19 cells from IL-1ß-stimulated increases of IL-6, IL-8, sICAM-1, and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways, thus ameliorating the inflammatory response.


Assuntos
Interleucina-1beta/farmacologia , Luteolina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Heme Oxigenase-1/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...