Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673151

RESUMO

This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3O4-based catalysts. The Co3O4 catalysts were activated in the reaction medium, and a small amount of CuO was added to activate Co3O4 under the action of weaker reducers (NH3BH3, (CH2NH2BH3)2). The high activity of Co3O4 has been previously associated with its reduced states (nanosized CoBn). The performed DFT modeling shows that activating water on the metal-like surface requires overcoming a higher energy barrier compared to hydride activation. The novelty of this study lies in its focus on understanding the impact of the remaining cobalt oxide phase. The XRD, TPR H2, TEM, Raman, and ATR FTIR confirm the formation of oxygen vacancies in the Co3O4 structure in the reaction medium, which increases the amount of adsorbed water. The kinetic isotopic effect measurements in D2O, as well as DFT modeling, reveal differences in water activation between Co and Co3O4-based catalysts. It can be assumed that the oxide phase serves not only as a precursor and support for the reduced nanosized cobalt active component but also as a key catalyst component that improves water activation.

2.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499909

RESUMO

Chlorine- and nitrogen-containing carbon nanofibers (CNFs) were obtained by combined catalytic pyrolysis of trichloroethylene (C2HCl3) and acetonitrile (CH3CN). Their efficiency in the adsorption of 1,2-dichlorobenzene (1,2-DCB) from water has been studied. The synthesis of CNFs was carried out over self-dispersing nickel catalyst at 600 °C. The produced CNFs possess a well-defined segmented structure, high specific surface area (~300 m2/g) and high porosity (0.5-0.7 cm3/g). The addition of CH3CN into the reaction mixture allows the introduction of nitrogen into the CNF structure and increases the volume of mesopores. As a result, the capacity of CNF towards adsorption of 1,2-DCB from its aqueous solution increased from 0.41 to 0.57 cm3/g. Regardless of the presence of N, the CNF samples exhibited a degree of 1,2-DCB adsorption from water-organic emulsion exceeding 90%. The adsorption process was shown to be well described by the Dubinin-Astakhov equation. The regeneration of the used CNF adsorbent through liquid-phase hydrodechlorination was also investigated. For this purpose, Pd nanoparticles (1.5 wt%) were deposited on the CNF surface to form the adsorbent with catalytic function. The presence of palladium was found to have a slight effect on the adsorption capacity of CNF. Further regeneration of the adsorbent-catalyst via hydrodechlorination of adsorbed 1,2-DCB was completed within 1 h with 100% conversion. The repeated use of regenerated adsorbent-catalysts for purification of solutions after the first cycle of adsorption ensures almost complete removal of 1,2-DCB.

3.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591346

RESUMO

Magnetically recovered Co and Co@Pt catalysts for H2 generation during NaBH4 hydrolysis were successfully synthesized by optimizing the conditions of galvanic replacement method. Commercial aluminum particles with an average size of 80 µm were used as a template for the synthesis of hollow shells of metallic cobalt. Prepared Co0 was also subjected to galvanic replacement reaction to deposit a Pt layer. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were used to investigate catalysts at each stage of their synthesis and after catalytic tests. It was established that Co0 hollow microshells show a high hydrogen-generation rate of 1560 mL·min-1·gcat-1 at 40 °C, comparable to that of many magnetic cobalt nanocatalysts. The modification of their surface by platinum (up to 19 at% Pt) linearly increases the catalytic activity up to 5.2 times. The catalysts prepared by the galvanic replacement method are highly stable during cycling. Thus, after recycling and washing off the resulting borate layer, the Co@Pt catalyst with a minimum Pt loading (0.2 at%) exhibits an increase in activity of 34% compared to the initial value. The study shows the activation of the catalyst in the reaction medium with the formation of cobalt-boron-containing active phases.

4.
Materials (Basel) ; 14(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576646

RESUMO

The paper presents a comparative study of the activity of magnetite (Fe3O4) and copper and cobalt ferrites with the structure of a cubic spinel synthesized by combustion of glycine-nitrate precursors in the reactions of ammonia borane (NH3BH3) hydrolysis and hydrothermolysis. It was shown that the use of copper ferrite in the studied reactions of NH3BH3 dehydrogenation has the advantages of a high catalytic activity and the absence of an induction period in the H2 generation curve due to the activating action of copper on the reduction of iron. Two methods have been proposed to improve catalytic activity of Fe3O4-based systems: (1) replacement of a portion of Fe2+ cations in the spinel by active cations including Cu2+ and (2) preparation of highly dispersed multiphase oxide systems, involving oxide of copper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...