Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(36): e2205608119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037385

RESUMO

Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.


Assuntos
Replicação do DNA , Ubiquitina-Proteína Ligases , Azepinas/metabolismo , Complexo do Signalossomo COP9/antagonistas & inibidores , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Sobrevivência Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Imidazóis/metabolismo , Proteína NEDD8/metabolismo , Pirazóis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
iScience ; 25(3): 103985, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35295813

RESUMO

The success of small molecule therapeutics that promotes degradation of critical cancer targets has fueled an intense effort to mimic this activity with bispecific molecules called PROTACs (proteolysis targeting chimeras). The simultaneous binding of PROTACs to a ligase and target can induce proximity-driven ubiquitination and degradation. VHL and CRBN are the two best characterized PROTAC ligases, but the rules governing their cellular activities remain unclear. To establish these requirements and extend them to new ligases, we screened a panel of 56 cell lines with two potent PROTACs that utilized VHL, MZ1, or CRBN, dBET1 to induce degradation of BRD4. With notable exceptions, MZ1 was broadly active in the panel whereas dBET1 was frequently inactive. A search for predictive biomarkers of PROTAC activity found that expression and mutation of VHL and CRBN were themselves predictors of PROTAC activity in the cell line panel.

3.
Int J Toxicol ; 40(5): 427-441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137282

RESUMO

Sotorasib is a first-in-class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. A comprehensive nonclinical safety assessment package, including secondary/safety pharmacology and toxicology studies, was conducted to support the marketing application for sotorasib. Sotorasib was negative in a battery of genotoxicity assays and negative in an in vitro phototoxicity assay. Based on in vitro assays, sotorasib had no off-target effects against various receptors, enzymes (including numerous kinases), ion channels, or transporters. Consistent with the tumor-specific target distribution (ie, KRASG12C), there were no primary pharmacology-related on-target effects identified. The kidney was identified as a target organ in the rat but not the dog. Renal toxicity in the rat was characterized by tubular degeneration and necrosis restricted to a specific region suggesting that the toxicity was attributed to the local formation of a putative toxic reactive metabolite. In the 3-month dog study, adaptive changes of hepatocellular hypertrophy due to drug metabolizing enzyme induction were observed in the liver that was associated with secondary effects in the pituitary and thyroid gland. Sotorasib was not teratogenic and had no direct effect on embryo-fetal development in the rat or rabbit. Human, dog, and rat circulating metabolites, M24, M10, and M18, raised no clinically relevant safety concerns based on the general toxicology studies, primary/secondary pharmacology screening, an in vitro human ether-à-go-go-related gene assay, or mutagenicity assessment. Overall, the results of the nonclinical safety program support a high benefit/risk ratio of sotorasib for the treatment of patients with KRAS p.G12C-mutated tumors.


Assuntos
Antineoplásicos/toxicidade , Piperazinas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/toxicidade , Pirimidinas/toxicidade , Animais , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...