Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 960248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589243

RESUMO

None of the current data processing pipelines for X-ray crystallography fragment-based lead discovery (FBLD) consults all the information available when deciding on the lattice and symmetry (i.e., the polymorph) of each soaked crystal. Often, X-ray crystallography FBLD pipelines either choose the polymorph based on cell volume and point-group symmetry of the X-ray diffraction data or leave polymorph attribution to manual intervention on the part of the user. Thus, when the FBLD crystals belong to more than one crystal polymorph, the discovery pipeline can be plagued by space group ambiguity, especially if the polymorphs at hand are variations of the same lattice and, therefore, difficult to tell apart from their morphology and/or their apparent crystal lattices and point groups. In the course of a fragment-based lead discovery effort aimed at finding ligands of the catalytic domain of UDP-glucose glycoprotein glucosyltransferase (UGGT), we encountered a mixture of trigonal crystals and pseudotrigonal triclinic crystals-with the two lattices closely related. In order to resolve that polymorphism ambiguity, we have written and described here a series of Unix shell scripts called CoALLA (crystal polymorph and ligand likelihood-based assignment). The CoALLA scripts are written in Unix shell and use autoPROC for data processing, CCP4-Dimple/REFMAC5 and BUSTER for refinement, and RHOFIT for ligand docking. The choice of the polymorph is effected by carrying out (in each of the known polymorphs) the tasks of diffraction data indexing, integration, scaling, and structural refinement. The most likely polymorph is then chosen as the one with the best structure refinement Rfree statistic. The CoALLA scripts further implement a likelihood-based ligand assignment strategy, starting with macromolecular refinement and automated water addition, followed by removal of the water molecules that appear to be fitting ligand density, and a final round of refinement after random perturbation of the refined macromolecular model, in order to obtain unbiased difference density maps for automated ligand placement. We illustrate the use of CoALLA to discriminate between H3 and P1 crystals used for an FBLD effort to find fragments binding to the catalytic domain of Chaetomium thermophilum UGGT.

2.
Proc Natl Acad Sci U S A ; 114(32): 8544-8549, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739903

RESUMO

Glycoproteins traversing the eukaryotic secretory pathway begin life in the endoplasmic reticulum (ER), where their folding is surveyed by the 170-kDa UDP-glucose:glycoprotein glucosyltransferase (UGGT). The enzyme acts as the single glycoprotein folding quality control checkpoint: it selectively reglucosylates misfolded glycoproteins, promotes their association with ER lectins and associated chaperones, and prevents premature secretion from the ER. UGGT has long resisted structural determination and sequence-based domain boundary prediction. Questions remain on how this single enzyme can flag misfolded glycoproteins of different sizes and shapes for ER retention and how it can span variable distances between the site of misfold and a glucose-accepting N-linked glycan on the same glycoprotein. Here, crystal structures of a full-length eukaryotic UGGT reveal four thioredoxin-like (TRXL) domains arranged in a long arc that terminates in two ß-sandwiches tightly clasping the glucosyltransferase domain. The fold of the molecule is topologically complex, with the first ß-sandwich and the fourth TRXL domain being encoded by nonconsecutive stretches of sequence. In addition to the crystal structures, a 15-Å cryo-EM reconstruction reveals interdomain flexibility of the TRXL domains. Double cysteine point mutants that engineer extra interdomain disulfide bridges rigidify the UGGT structure and exhibit impaired activity. The intrinsic flexibility of the TRXL domains of UGGT may therefore endow the enzyme with the promiscuity needed to recognize and reglucosylate its many different substrates and/or enable reglucosylation of N-linked glycans situated at variable distances from the site of misfold.


Assuntos
Glucosiltransferases/química , Glucosiltransferases/fisiologia , Animais , Chaetomium/genética , Chaetomium/metabolismo , Cristalografia por Raios X/métodos , Retículo Endoplasmático/metabolismo , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Glucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Conformação Molecular , Domínios Proteicos/fisiologia , Dobramento de Proteína , Transporte Proteico/fisiologia , Especificidade por Substrato
3.
J Biol Chem ; 292(10): 4044-4053, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28119453

RESUMO

Analogous to eukaryotic ubiquitination, proteins in actinobacteria can be post-translationally modified in a process referred to as pupylation, the covalent attachment of prokaryotic ubiquitin-like protein Pup to lysine side chains of the target protein via an isopeptide bond. As in eukaryotes, an opposing activity counteracts the modification by specific cleavage of the isopeptide bond formed with Pup. However, the enzymes involved in pupylation and depupylation have evolved independently of ubiquitination and are related to the family of ATP-binding and hydrolyzing carboxylate-amine ligases of the glutamine synthetase type. Furthermore, the Pup ligase PafA and the depupylase Dop share close structural and sequence homology and have a common evolutionary history despite catalyzing opposing reactions. Here, we investigate the role played by the nucleotide in the active site of the depupylase Dop using a combination of biochemical experiments and X-ray crystallographic studies. We show that, although Dop does not turn over ATP stoichiometrically with substrate, the active site nucleotide species in Dop is ADP and inorganic phosphate rather than ATP, and that non-hydrolyzable analogs of ATP cannot support the enzymatic reaction. This finding suggests that the catalytic mechanism is more similar to the mechanism of the ligase PafA than previously thought and likely involves the transient formation of a phosphorylated Pup-intermediate. Evidence is presented for a mechanism where the inorganic phosphate acts as the nucleophilic species in amide bond cleavage and implications for Dop function are discussed.


Assuntos
Actinobacteria/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Fosfatos/metabolismo , Actinobacteria/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...