Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Pathol ; 193(10): 1389-1399, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028592

RESUMO

Chronic liver disease (CLD) is a major worldwide public health threat, with an estimated prevalence of 1.5 billion individuals with CLD in 2020. Chronic activation of endoplasmic reticulum (ER) stress-related pathways is recognized as substantially contributing to the pathologic progression of CLD. The ER is an intracellular organelle that folds proteins into their correct three-dimensional shapes. ER-associated enzymes and chaperone proteins highly regulate this process. Perturbations in protein folding lead to misfolded or unfolded protein accumulation in the ER lumen, resulting in ER stress and concomitant activation of the unfolded protein response (UPR). The adaptive UPR is a set of signal transduction pathways evolved in mammalian cells that attempts to reestablish ER protein homeostasis by reducing protein load and increasing ER-associated degradation. However, maladaptive UPR responses in CLD occur due to prolonged UPR activation, leading to concomitant inflammation and cell death. This review assesses the current understanding of the cellular and molecular mechanisms that regulate ER stress and the UPR in the progression of various liver diseases and the potential pharmacologic and biological interventions that target the UPR.


Assuntos
Estresse do Retículo Endoplasmático , Hepatopatias , Animais , Humanos , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas , Transdução de Sinais/fisiologia , Chaperonas Moleculares , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA