Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Biophys J ; 123(12): 1542-1552, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38664965

RESUMO

Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCCICCG, an optimized PETase, derived from the leaf-branch compost cutinase enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0, whereas the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30°C to 50°C. Whereas the hydrolytic activity of the enzyme toward a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity and underscores the importance of studying the enzyme at the liquid-solid interface.


Assuntos
Polietilenotereftalatos , Concentração de Íons de Hidrogênio , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrólise , Temperatura , Modelos Moleculares
2.
Toxins (Basel) ; 14(11)2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36356031

RESUMO

The pharmacology of calcium-activated chloride current is not well developed. Peptides from scorpion venom present potent pharmacological actions on ionic conductance used to characterize the function of channels but can also be helpful to develop organic pharmacological tools. Using electrophysiological recording coupled with calcium measurement, we tested the potent effect of peptides extracted from Leuirus quinquestratus quinquestratus venom on the calcium-activated chloride current expressed in smooth muscle cells freshly dissociated from rat portal veins. We identified one peptide which selectively inhibited the chloride conductance without effects on either calcium signaling or calcium and potassium currents expressed in this cell type. The synthetic peptide had the same affinity, but the chemical modification of the amino acid sequence altered the efficiency to inhibit the calcium-activated chloride conductance.


Assuntos
Venenos de Escorpião , Ratos , Animais , Venenos de Escorpião/farmacologia , Venenos de Escorpião/metabolismo , Canais de Cloreto/metabolismo , Cálcio/metabolismo , Cloretos/farmacologia , Miócitos de Músculo Liso , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
Biomolecules ; 12(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358923

RESUMO

(1) Background: Prion-like transcellular spreading of tau pathology in Alzheimer's disease (AD) is mediated by tau binding to the cell-surface glycan heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. (2) Methods and Results: Binding-site mapping using NMR showed two major binding regions in full-length tau responsible for heparin interaction. Thus, two tau constructs, tau PRR2* and tau R2*, were designed to investigate the molecular details at the tau-heparin binding interface. The 2D 1H-15N HSQC of tau PRR2* and tau R2* lacked dispersion, which is characteristic for intrinsically disordered proteins. NMR titration of Arixtra into 15N-labeled tau R2* induced large chemical shift perturbations (CSPs) in 275VQIINK280 and downstream residues K281-D283, in which L282 and I278 displayed the largest shifts. NMR titration of Arixtra into 15N-labeled tau PRR2* induced the largest CSPs for residue R209 followed by residues S210 and R211. Residue-based CSP fitting showed that tau PRR2*-Arixtra interaction had a much stronger binding affinity (0.37-0.67 mM) than that of tau R2*-Arixtra (1.90-5.12 mM) interaction. (3) Conclusions: Our results suggested that PRR2 is a crucial domain for tau-heparin and tau-HS interaction.


Assuntos
Heparina , Heparitina Sulfato , Ligação Proteica , Fondaparinux , Sítios de Ligação , Heparitina Sulfato/química , Heparina/química , Prolina/metabolismo , Proteínas tau/metabolismo
4.
mSphere ; 7(5): e0024422, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36043703

RESUMO

In the human gut microbiota, Bacteroidetes break down dietary and endogenous glycosides through highly specific polysaccharide utilization loci (PULs). PULs encode a variety of sensor regulators, binding proteins, transporters, and carbohydrate-active enzymes (CAZymes). Surface glycan-binding proteins (SGBPs) are essential for the efficient capture of the glycosides present on the cell surface, providing Bacteroidetes with a competitive advantage in colonizing their habitats. Here, we present the functional and structural characterization of a SusD-like protein encoded by a xylooligosaccharide (XOS) PUL from an uncultured human gut Bacteroides strain. This locus is also conserved in Bacteroides vulgatus, thereby providing new mechanistic insights into the role of SGBPs in the metabolism of dietary fiber of importance for gut health. Various in vitro analyses, including saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy, revealed that the SusD-like protein cannot bind to the cognate substrate of the XOS PUL, although its presence is essential for the PUL to function. Analysis of the crystal structure of the SusD-like protein reveals an unfolded binding surface and the absence or inappropriate orientation of several key residues compared with other known SusD-like structures. These results highlight the critical role of the SusD-like protein in the transport of oligosaccharides and provide fundamental knowledge about the structure-function of SusC/D-like transporters, revealing that the binding specificity of SusD-like SGBPs does not necessarily reflect the uptake specificity of the transporter. IMPORTANCE The metabolization of dietary fiber is a crucial function for many gut bacteria, especially Bacteroidetes, which are particularly well adapted for recognizing, binding, transporting, and degrading glycosides. In this study, we report the functional and structural characterization of a SusD-like protein involved in xylooligosaccharide utilization by an uncultured gut Bacteroides strain. We demonstrate that while this protein is structurally similar to many canonical Bacteroidetes surface glycan-binding proteins, it cannot bind the substrate taken up by the cognate SusC-like transporter. This lack of binding might be explained by the absence of several key residues known to be involved in oligosaccharide binding and/or the possible necessity of the SusC-like protein to be present to create a cooperative binding site. The term "surface glycan-binding proteins" generally used for SusD-like proteins is thus not generic. Overall, this study allowed us to revisit the concept of glycoside utilization by Bacteroidetes, in particular those strains that feed on the short fibers naturally present in some dietary compounds or on the leftovers of other microbes.


Assuntos
Bacteroides , Oligossacarídeos , Humanos , Bacteroides/genética , Bacteroides/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/genética , Fibras na Dieta/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana/metabolismo , Glicosídeos/metabolismo
5.
Biophys J ; 121(15): 2882-2894, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794828

RESUMO

Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72°C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.


Assuntos
Plásticos , Polietilenotereftalatos , Plásticos/química , Temperatura
6.
Biochem Biophys Res Commun ; 589: 223-228, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34929445

RESUMO

Covalent protein complexes have been used to assemble enzymes in large scaffolds for biotechnology purposes. Although the catalytic mechanism of the covalent linking of such proteins is well known, the recognition and overall structural mechanisms driving the association are far less understood but could help further functional engineering of these complexes. Here, we study the Jo-In complex by NMR spectroscopy and molecular modelling. We characterize a transient non-covalent complex, with structural elements close to those in the final covalent complex. Using site specific mutagenesis, we further show that this non-covalent association is essential for the covalent complex to form.


Assuntos
Proteínas de Bactérias/química , Complexos Multiproteicos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estabilidade Proteica , Espectroscopia de Prótons por Ressonância Magnética , Streptococcus pneumoniae/metabolismo
7.
N Biotechnol ; 65: 31-41, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34352412

RESUMO

Irrespective of their biological origin, most proteins are composed of several elementary domains connected by linkers. These domains are either functionally independent units, or part of larger multidomain structures whose functions are defined by their spatial proximity. Carbohydrate-degrading enzymes provide examples of a range of multidomain structures, in which catalytic protein domains are frequently appended to one or more non-catalytic carbohydrate-binding modules which specifically bind to carbohydrate motifs. While the carbohydrate-binding specificity of these modules is clear, their function is not fully elucidated. Herein, an original approach to tackle the study of carbohydrate-binding modules using the Jo-In biomolecular welding protein pair is presented. To provide a proof of concept, recombinant xylanases appended to two different carbohydrate-binding modules have been created and produced. The data reveal the biochemical properties of four xylanase variants and provide the basis for correlating enzyme activity to structural properties and to the nature of the substrate and the ligand specificity of the appended carbohydrate-binding module. It reveals that specific spatial arrangements favour activity on soluble polymeric substrates and that activity on such substrates does not predict the behaviour of multimodular enzymes on insoluble plant cell wall samples. The results highlight that the Jo-In protein welding system is extremely useful to design multimodular enzyme systems, especially to create rigid conformations that decrease the risk of intermodular interference. Further work on Jo-In will target the introduction of varying degrees of flexibility, providing the means to study this property and the way it may influence multimodular enzyme functions.


Assuntos
Parede Celular , Endo-1,4-beta-Xilanases , Células Vegetais/enzimologia , Engenharia de Proteínas , Carboidratos , Domínio Catalítico , Parede Celular/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Especificidade por Substrato
8.
Anal Chem ; 93(27): 9428-9436, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34197087

RESUMO

Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metabolites. The number of quantifiable isotopic species could be increased and the coverage of isotopic space improved by integrating measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able to deal with partial, heterogeneous isotopic measurements has yet been developed. Here, we present a generic computational framework based on symbolic calculus that can integrate any isotopic data set by connecting measurements to the chemical structure of the molecules. As a test case, we apply this framework to isotopic analyses of amino acids, which are ubiquitous to life, central to many biological questions, and can be analyzed by a broad range of MS and NMR methods. We demonstrate how this integrative framework helps to (i) clarify and improve the coverage of isotopic space, (ii) evaluate the complementarity and redundancy of different techniques, (iii) consolidate isotopic data sets, (iv) design experiments, and (v) guide future analytical developments. This framework, which can be applied to any labeled element, isotopic tracer, metabolite, and analytical platform, has been implemented in IsoSolve (available at https://github.com/MetaSys-LISBP/IsoSolve and https://pypi.org/project/IsoSolve), an open-source software that can be readily integrated into data analysis pipelines.


Assuntos
Aminoácidos , Software , Isótopos de Carbono , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
9.
iScience ; 24(5): 102480, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113822

RESUMO

Lanthipeptides, ribosomally synthesized and post-translationally modified peptides (RiPPs), can be divided into five classes based on their structures and biosynthetic pathways. Class I and II lanthipeptides have been well characterized, whereas less is known about members of the other three classes. Here, we describe a new family of class III lanthipeptides from Firmicutes. Members of the family are distinguished by the presence of a single carboxy-terminal labionin. We identified and characterized andalusicin, a representative of this family. Andalusicin bears two methyl groups at the α-amino terminus, a post-translational modification that has not previously been identified in class III lanthipeptides. Mature andalusicin A shows bioactivity against various Gram-positive bacteria, an activity that is highly dependent on the α-N dimethylation.

10.
Anal Chem ; 93(11): 4818-4824, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33711235

RESUMO

Phosphorylated metabolites are omnipresent in cells, but their analytical characterization faces several technical hurdles. Here, we detail an improved NMR workflow aimed at assigning the high-resolution subspectrum of the phospho-metabolites in a complex mixture. Combining a pure absorption J-resolved spectrum (Pell, A. J.; J. Magn. Reson. 2007, 189 (2), 293-299) with alternate on- and off-switching of the 31P coupling interaction during the t1 evolution with a pure in-phase (PIP) HSQMBC experiment (Castañar, L.; Angew. Chem., Int. Ed. 2014, 53 (32), 8379-8382) without or with total correlation spectroscopy (TOCSY) transfer during the insensitive nuclei enhancement by polarization transfer (INEPT) gives access to selective identification of the individual subspectra of the phosphorylated metabolites. Returning to the initial J-res spectra, we can extract with optimal resolution the full trace for the individual phospho-metabolites, which can then be transposed on the high-resolution quantitative one dimensional spectrum.


Assuntos
Misturas Complexas , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fluxo de Trabalho
11.
Magn Reson (Gott) ; 2(2): 619-627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905230

RESUMO

The heteronuclear single quantum correlation (HSQC) experiment developed by Bodenhausen and Ruben (1980) in the early days of modern nuclear magnetic resonance (NMR) is without a doubt one of the most widely used experiments, with applications in almost every aspect of NMR including metabolomics. Acquiring this experiment, however, always implies a trade-off: simplification versus resolution. Here, we present a method that artificially lifts this barrier and demonstrate its application towards metabolite identification in a complex mixture. Based on the measurement of clean in-phase and clean anti-phase (CLIP/CLAP) HSQC spectra (Enthart et al., 2008), we construct a virtually decoupled HSQC (vd-HSQC) spectrum that maintains the highest possible resolution in the proton dimension. Combining this vd-HSQC spectrum with a J-resolved spectrum (Pell and Keeler, 2007) provides useful information for the one-dimensional proton spectrum assignment and for the identification of metabolites in Dreissena polymorpha (Prud'homme et al., 2020).

12.
Metabolites ; 10(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570933

RESUMO

The zebra mussel (Dreissena polymorpha) represents a useful reference organism for the ecotoxicological study of inland waters, especially for the characterization of the disturbances induced by human activities. A nuclear magnetic resonance (NMR)-based metabolomic approach was developed on this species. The investigation of its informative potential required the prior interpretation of a reference 1H NMR spectrum of a lipid-free zebra mussel extract. After the extraction of polar metabolites from a pool of whole-body D. polymorpha powder, the resulting highly complex 1D 1H NMR spectrum was interpreted and annotated through the analysis of the corresponding 2D homonuclear and heteronuclear NMR spectra. The spectrum interpretation was completed and validated by means of sample spiking with 24 commercial compounds. Among the 238 detected 1H signals, 53% were assigned, resulting in the identification of 37 metabolites with certainty or high confidence, while 5 metabolites were only putatively identified. The description of such a reference spectrum and its annotation are expected to speed up future analyses and interpretations of NMR-based metabolomic studies on D. polymorpha and to facilitate further explorations of the impact of environmental changes on its physiological state, more particularly in the context of large-scale ecological and ecotoxicological studies.

13.
Magn Reson Chem ; 58(4): 305-311, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909497

RESUMO

Nuclear magnetic resonance (NMR)-based fluxomics seeks to measure the incorporation of isotope labels in selected metabolites to follow kinetically the synthesis of the latter. It can however equally be used to understand the biosynthetic origin of the same metabolites. We investigate here different NMR approaches to optimize such experiments in terms of resolution and time requirement. Using the isoleucine biosynthesis as an example, we explore the use of different field strengths ranging from 500 MHz to 1.1 GHz. Because of the different field dependence of chemical shift and heteronuclear J couplings, the spectra change at different field strengths. We equally explore the approach to silence the leucine/valine methyl signals through the use of a suitable deuterated precursor, thereby allowing selective observation of the Ile 13 C labeling pattern. Combining both approaches, we arrive at an efficient procedure for the NMR-based exploration of Ile biosynthesis.

14.
Angew Chem Int Ed Engl ; 59(5): 1818-1827, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31692167

RESUMO

Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1-/- (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau-HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.


Assuntos
Doença de Alzheimer/genética , Membrana Celular/metabolismo , Heparitina Sulfato/química , Proteínas tau/metabolismo , Células Cultivadas , Humanos
15.
Nanoscale ; 11(35): 16544-16552, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455954

RESUMO

Bimetallic ruthenium-platinum nanoparticles (RuPt NPs) of different surface distributions and stabilized by using a sulfonated N-heterocyclic carbene ligand (1-(2,6-diisopropylphenyl)-3-(3-potassium sulfonatopropyl)-imidazol-2-ylidene) were prepared from Ru(COD)(COT) (COD = cyclooctadiene and COT = cyclooctatriene), and platinum precursors having various decomposition rates (Pt(NBE)3, NBE = norbornene, Pt(CH3)2(COD) and Pt2(DBA)3, DBA = dibenzylideneacetone). Structural and surface studies by FT-IR and solid-state MAS NMR, using carbon monoxide as a probe molecule, revealed the presence of different structures and surface compositions for different nanoparticles of similar sizes, which principally depend on the decomposition rate of the organometallic precursors used during the synthesis. Specifically, the slower the decomposition rate of the platinum precursor, the higher the number of Pt atoms at the NP surface. The different bimetallic RuPt NPs, as well as their monometallic equivalents (Pt and Ru NPs), were used in isotopic H/D exchange through C-H activation on l-lysine. Interestingly, the activity and selectivity of the direct C-H deuteration were dependent on the NP surface composition at the α position but not on that at the ε position. Chemical shift perturbation (CSP) experiments revealed that the difference in reactivity at the α position is due to a Pt-carboxylate interaction, which hinders the H/D exchange.

16.
J Biol Chem ; 294(35): 13171-13185, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315928

RESUMO

Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.


Assuntos
Ciclofilina A/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Regulação Alostérica , Ciclofilina A/genética , Ciclofilina A/isolamento & purificação , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , RNA Viral/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/isolamento & purificação , Replicação Viral
17.
ACS Chem Biol ; 14(6): 1363-1379, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31046227

RESUMO

Self-assembly of the microtubule-associated protein tau into neurotoxic oligomers, fibrils, and paired helical filaments, and cell-to-cell spreading of these pathological tau species are critical processes underlying the pathogenesis of Alzheimer's disease and other tauopathies. Modulating the self-assembly process and inhibiting formation and spreading of such toxic species are promising strategies for therapy development. A challenge in investigating tau self-assembly in vitro is that, unlike most amyloidogenic proteins, tau does not aggregate in the absence of posttranslational modifications (PTM), aggregation inducers, or preformed seeds. The most common induction method is addition of polyanions, such as heparin; yet, this artificial system may not represent adequately tau self-assembly in vivo, which is driven by aberrant phosphorylation and other PTMs, potentially leading to in vitro data that do not reflect the behavior of tau and its interaction with modulators in vivo. To tackle these challenges, methods for in vitro phosphorylation of tau to produce aggregation-competent forms recently have been introduced ( Despres et al. ( 2017 ) Proc. Natl. Acad. Sci. U.S.A. , 114 , 9080 - 9085 ). However, the oligomerization, seeding, and interaction with assembly modulators of the different forms of tau have not been studied to date. To address these knowledge gaps, we compared here side-by-side the self-assembly and seeding activity of heparin-induced tau with two forms of in vitro phosphorylated tau and tested how the molecular tweezer CLR01, a negatively charged compound, affected these processes. Tau was phosphorylated by incubation either with activated extracellular signal-regulated kinase 2 or with a whole rat brain extract. Seeding activity was measured using a fluorescence-resonance energy transfer-based biosensor-cell method. We also used solution-state NMR to investigate the binding sites of CLR01 on tau and how they were impacted by phosphorylation. Our systematic structure-activity relationship study demonstrates that heparin-induced tau behaves differently from in vitro phosphorylated tau. The aggregation rates of the different forms are distinct as is the intracellular localization of the induced aggregates, which resemble brain-derived tau strains suggesting that heparin-induced tau and in vitro phosphorylated tau have different conformations, properties, and activities. CLR01 inhibits aggregation and seeding of both heparin-induced and in vitro phosphorylated tau dose-dependently, although heparin induction interferes with the interaction between CLR01 and tau.


Assuntos
Heparina/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Fosforilação , Ratos , Proteínas tau/antagonistas & inibidores
18.
J Biol Chem ; 294(24): 9316-9325, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088912

RESUMO

Tau is a microtubule-associated protein involved in the regulation of axonal microtubules in neurons. In pathological conditions, it forms fibrils that are molecular hallmarks of neurological disorders known as tauopathies. In the last 2 years, cryo-EM has given unprecedented high-resolution views of Tau in both physiological and pathological conditions. We review here these new findings and put them into the context of the knowledge about Tau before this structural breakthrough. The first structures of Tau fibrils, a molecular hallmark of Alzheimer's disease (AD), were based on fibrils from the brain of an individual with AD and, along with similar patient-derived structures, have set the gold standard for the field. Cryo-EM structures of Tau fibers in three distinct diseases, AD, Pick's disease, and chronic traumatic encephalopathy, represent the end points of Tau's molecular trajectory. We propose that the recent Tau structures may call for a re-examination of databases that link different Tau variants to various forms of dementia. We also address the question of how this structural information may link Tau's functional and pathological aspects. Because this structural information on Tau was obtained in a very short period, the new structures should be viewed in light of earlier structural observations and past and present functional data to shed additional light on Tau function and dysfunction.


Assuntos
Doença de Alzheimer/patologia , Microscopia Crioeletrônica/métodos , Tauopatias/patologia , Proteínas tau/metabolismo , Proteínas tau/ultraestrutura , Doença de Alzheimer/metabolismo , Animais , Humanos , Tauopatias/metabolismo
19.
Biochemistry ; 58(25): 2853-2859, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31140266

RESUMO

The factors that define the resulting polymer length of distributive polymerases are poorly understood. Here, starting from the crystal structure of the dextransucrase DSR-M in complex with an isomaltotetraose, we define different anchoring points for the incoming acceptor. Mutation of one of these, Trp624, decreases the catalytic rate of the enzyme but equally skews the size distribution of the resulting dextran chains toward shorter chains. Nuclear magnetic resonance analysis shows that this mutation influences both the dynamics of the active site and the water accessibility. Monte Carlo simulation of the elongation process allows interpretation of these results in terms of enhanced futile encounters, whereby the less effective binding increases the pool of effective seeds for the dextran chains and thereby directly determines the length distribution of the final polymers.


Assuntos
Dextranos/química , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Biocatálise , Domínio Catalítico , Escherichia coli/genética , Glucosiltransferases/genética , Leuconostoc/enzimologia , Modelos Químicos , Estrutura Molecular , Método de Monte Carlo , Mutação , Oligossacarídeos/química , Engenharia de Proteínas
20.
Angew Chem Int Ed Engl ; 58(15): 4891-4895, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768844

RESUMO

A general approach for the efficient hydrogen-isotope exchange of nucleobase derivatives is described. Catalyzed by ruthenium nanoparticles, using mild reaction conditions, and involving either D2 or T2 as isotopic sources, this reaction possesses a wide substrate scope and a high solvent tolerability. This novel method facilitates the access to essential diagnostic tools in drug discovery and development: tritiated pharmaceuticals with high specific activities and deuterated oligonucleotides suitable for use as internal standards during LC-MS quantification.


Assuntos
Medição da Troca de Deutério , Deutério/química , Hidrogênio/química , Oligonucleotídeos/química , Preparações Farmacêuticas/química , Cromatografia Líquida , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...