Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 281(3): 231-242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034376

RESUMO

Correlative light and electron microscopy (CLEM) is a method used to investigate the exact same region in both light and electron microscopy (EM) in order to add ultrastructural information to a light microscopic (usually fluorescent) signal. Workflows combining optical or fluorescent data with electron microscopic images are complex, hence there is a need to communicate detailed protocols and share tips & tricks for successful application of these methods. With the development of volume-EM techniques such as serial blockface scanning electron microscopy (SBF-SEM) and Focussed Ion Beam-SEM, correlation in three dimensions has become more efficient. Volume electron microscopy allows automated acquisition of serial section imaging data that can be reconstructed in three dimensions (3D) to provide a detailed, geometrically accurate view of cellular ultrastructure. In addition, combining volume-EM with high-resolution light microscopy (LM) techniques decreases the resolution gap between LM and EM, making retracing of a region of interest and eventual overlays more straightforward. Here, we present a workflow for 3D CLEM on mouse liver, combining high-resolution confocal microscopy with SBF-SEM. In this workflow, we have made use of two types of landmarks: (1) near infrared laser branding marks to find back the region imaged in LM in the electron microscope and (2) landmarks present in the tissue but independent of the cell or structure of interest to make overlay images of LM and EM data. Using this approach, we were able to make accurate 3D-CLEM overlays of liver tissue and correlate the fluorescent signal to the ultrastructural detail provided by the electron microscope. This workflow can be adapted for other dense cellular tissues and thus act as a guide for other three-dimensional correlative studies. LAY DESCRIPTION: As cells and tissues exist in three dimensions, microscopy techniques have been developed to image samples, in 3D, at the highest possible detail. In light microscopy, fluorescent probes are used to identify specific proteins or structures either in live samples, (providing dynamic information), or in fixed slices of tissue. A disadvantage of fluorescence microscopy is that only the labeled proteins/structures are visible, while their cellular context remains hidden. Electron microscopy is able to image biological samples at high resolution and has the advantage that all structures in the tissue are visible at nanometer (10-9 m) resolution. Disadvantages of this technique are that it is more difficult to label a single structure and that the samples must be imaged under high vacuum, so biological samples need to be fixed and embedded in a plastic resin to stay as close to their natural state as possible inside the microscope. Correlative Light and Electron Microscopy aims to combine the advantages of both light and electron microscopy on the same sample. This results in datasets where fluorescent labels can be combined with the high-resolution contextual information provided by the electron microscope. In this study we present a workflow to guide a tissue sample from the light microscope to the electron microscope and image the ultra-structure of a specific cell type in the liver. In particular we focus on the incorporation of fiducial markers during the sample preparation to help navigate through the tissue in 3D in both microscopes. One sample is followed throughout the workflow to visualize the important steps in the process, showing the final result; a dataset combining fluorescent labels with ultra-structural detail.


Assuntos
Elétrons , Imageamento Tridimensional , Animais , Fígado/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Fluxo de Trabalho
2.
J Microsc ; 279(3): 189-196, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31828778

RESUMO

The intercalated disc is an important structure in cardiomyocytes, as it is essential to maintain correct contraction and proper functioning of the heart. Adhesion and communication between cardiomyocytes are mediated by three main types of intercellular junctions, all residing in the intercalated disc: gap junctions, desmosomes and the areae compositae. Mutations in genes that encode junctional proteins, including αT-catenin (encoded by CTNNA3), have been linked to arrhythmogenic cardiomyopathy and sudden cardiac death. In mice, the loss of αT-catenin in cardiomyocytes leads to impaired heart function, fibrosis, changed expression of desmosomal proteins and increased risk for arrhythmias following ischemia-reperfusion. Currently, it is unclear how the intercalated disc and the intercellular junctions are organised in 3D in the hearts of this αT-catenin knockout (KO) mouse model. In order to scrutinise this, ventricular cardiac tissue of αT-catenin KO mice was used for volume electron microscopy (VEM), making use of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), allowing a careful 3D reconstruction of the intercalated disc, including gap junctions and desmosomes. Although αT-catenin KO and control mice display a comparable organisation of the sarcomere and the different intercalated disc regions, the folds of the plicae region of the intercalated disc are longer and more narrow in the KO heart, and the pale region between the sarcomere and the intercalated disc is larger. In addition, αT-catenin KO intercalated discs appear to have smaller gap junctions and desmosomes in the plicae region, while gap junctions are larger in the interplicae region of the intercalated disc. Although the reason for this remodelling of the ultrastructure after αT-catenin deletion remains unclear, the excellent resolution of the FIB-SEM technology allows us to reconstruct details that were not reported before. LAY DESCRIPTION: Cardiomyocytes are cells that make up the heart muscle. As the chief cell type of the heart, cardiomyocytes are primarily involved in the contractile function of the heart that enables the pumping of blood around the body. Cardiac muscle cells are connected to each other at their short end by numerous intercellular junctions forming together a structure called the intercalated disc. These intercellular junctions comprise specific protein complexes, which are crucial for both intercellular adhesion and correct contraction of the heart. Imaging by conventional electron microscopy (EM) revealed a heavily folded intercalated disc with apparently random organization of the intercellular junctions. However, this conclusion was based on analysis in two dimensions (2D). 3D information of these structures is needed to unravel their true organization and function. In the present study, we used a more contemporary technique, called volume EM, to image and reconstruct the intercalated discs in 3D. By this approach, EM images are made from a whole block of tissue what differs significantly from classical EM methods that uses only one very thin slice for imaging. Further, we analyzed in comparison to normal mice also a mouse model for cardiomyopathy in which a specific protein of the cardiac intercellular junctions, αT-catenin, is absent. Volume EM revealed that in the hearts of these mice with cardiomyopathy, the finger-like folds of the intercalated disc are longer and thinner compared to control hearts. Also the intercellular junctions on the folded parts of the intercalated disc are smaller and their connection to the striated cytoskeleton seems further away. In conclusion, our volume EM study has expanded our understanding of 3D structures at the intercalated discs and will pave the way for more detailed models of disturbed cell-cell contacts associated with heart failure.


Assuntos
Desmossomos/ultraestrutura , Junções Comunicantes/ultraestrutura , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , alfa Catenina/genética , Animais , Imageamento Tridimensional , Junções Intercelulares/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Mutação
3.
J Microsc ; 271(3): 239-254, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29882967

RESUMO

In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador/instrumentação
4.
J Microsc ; 259(2): 80-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25623622

RESUMO

When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.


Assuntos
Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Animais , Encéfalo/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Pulmão/citologia , Pulmão/ultraestrutura , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura/instrumentação , Microtomia , Raízes de Plantas/ultraestrutura
5.
Cell Death Differ ; 22(6): 1012-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25430793

RESUMO

Receptor-interacting protein kinase 4 (RIPK4)-deficient mice have epidermal defects and fusion of all external orifices. These are similar to Bartsocas-Papas syndrome and popliteal pterygium syndrome (PPS) in humans, for which causative mutations have been documented in the RIPK4 and IRF6 (interferon regulatory factor 6) gene, respectively. Although genetically distinct, these syndromes share the anomalies of marked pterygia, syndactyly, clefting and hypoplastic genitalia. Despite the strong resemblance of these two syndromes, no molecular connection between the transcription factor IRF6 and the kinase RIPK4 was known and the mechanism underlying the phenotype was unclear. Here we describe that RIPK4 deficiency in mice causes epithelial fusions associated with abnormal periderm development and aberrant ectopic localization of E-cadherin on the apical membrane of the outer peridermal cell layers. In Xenopus, RIPK4 depletion causes the absence of ectodermal epiboly and concomitant gastrulation defects that phenocopy ectopic expression of dominant-negative IRF6. We found that IRF6 controls RIPK4 expression and that wild-type, but not kinase-dead, RIPK4 can complement the gastrulation defect in Xenopus caused by IRF6 malfunctioning. In contrast to the mouse, we observed only minor effects on cadherin membrane expression in Xenopus RIPK4 morphants. However, gastrulation defects were associated with a virtual absence of cortical actin in the ectodermal cells that face the blastocoel cavity and this was phenocopied in embryos expressing dominant-negative IRF6. A role for RIPK4 in actin cytoskeleton organization was also revealed in mouse epidermis and in human epithelial HaCaT cells. In conclusion, we showed that in mice RIPK4 is implicated in cortical actin organization and in E-cadherin localization or function, which can explain the characteristic epithelial fusions observed in PPSs. In addition, we provide a novel molecular link between IRF6 and RIPK4 that unifies the different PPSs to a common molecular pathway.


Assuntos
Fenda Labial/metabolismo , Fissura Palatina/metabolismo , Anormalidades do Olho/metabolismo , Dedos/anormalidades , Fatores Reguladores de Interferon/metabolismo , Articulação do Joelho/anormalidades , Deformidades Congênitas das Extremidades Inferiores/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sindactilia/metabolismo , Anormalidades Urogenitais/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades do Olho/genética , Humanos , Imuno-Histoquímica , Fatores Reguladores de Interferon/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Articulação do Joelho/metabolismo , Lentivirus , Deformidades Congênitas das Extremidades Inferiores/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Serina-Treonina Quinases/genética , Sindactilia/genética , Anormalidades Urogenitais/genética
6.
Cell Death Differ ; 19(9): 1495-504, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22441670

RESUMO

Under stress conditions, pro-survival and pro-death processes are concomitantly activated and the final outcome depends on the complex crosstalk between these pathways. In most cases, autophagy functions as an early-induced cytoprotective response, favoring stress adaptation by removing damaged subcellular constituents. Moreover, several lines of evidence suggest that autophagy inactivation by the apoptotic machinery is a crucial event for cell death execution. Here we show that apoptotic stimuli induce a rapid decrease in the level of the autophagic factor Activating Molecule in Beclin1-Regulated Autophagy (Ambra1). Ambra1 degradation is prevented by concomitant inhibition of caspases and calpains. By both in vitro and in vivo approaches, we demonstrate that caspases are responsible for Ambra1 cleavage at the D482 site, whereas calpains are involved in complete Ambra1 degradation. Finally, we show that Ambra1 levels are critical for the rate of apoptosis induction. RNA interference-mediated Ambra1 downregulation further sensitizes cells to apoptotic stimuli, while Ambra1 overexpression and, more efficiently, a caspase non-cleavable mutant counteract cell death by prolonging autophagy induction. We conclude that Ambra1 is an important target of apoptotic proteases resulting in the dismantling of the autophagic machinery and the accomplishment of the cell death program.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Proteólise , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Caspases/genética , Caspases/metabolismo , Sobrevivência Celular/fisiologia , Humanos , Células Jurkat , Mutação de Sentido Incorreto
7.
Cell Death Differ ; 18(12): 1845-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21566665

RESUMO

The ubiquitin-editing enzyme A20 (tumor necrosis factor-α-induced protein 3) serves as a critical brake on nuclear factor κB (NF-κB) signaling. In humans, polymorphisms in or near the A20 gene are associated with several inflammatory disorders, including psoriasis. We show here that epidermis-specific A20-knockout mice (A20(EKO)) develop keratinocyte hyperproliferation, but no signs of skin inflammation, such as immune cell infiltration. However, A20(EKO) mice clearly developed ectodermal organ abnormalities, including disheveled hair, longer nails and sebocyte hyperplasia. This phenotype resembles that of mice overexpressing ectodysplasin-A1 (EDA-A1) or the ectodysplasin receptor (EDAR), suggesting that A20 negatively controls EDAR signaling. We found that A20 inhibited EDAR-induced NF-κB signaling independent from its de-ubiquitinating activity. In addition, A20 expression was induced by EDA-A1 in embryonic skin explants, in which its expression was confined to the hair placodes, known to be the site of EDAR expression. In summary, our data indicate that EDAR-induced NF-κB levels are controlled by A20, which functions as a negative feedback regulator, to assure proper skin homeostasis and epidermal appendage development.


Assuntos
Cisteína Endopeptidases/genética , Epiderme/fisiologia , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Animais , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Ectodisplasinas/farmacologia , Ectodisplasinas/fisiologia , Receptor Edar/agonistas , Receptor Edar/antagonistas & inibidores , Receptor Edar/metabolismo , Epiderme/patologia , Retroalimentação Fisiológica , Genes Reporter , Células HEK293 , Cabelo/anormalidades , Cabelo/embriologia , Humanos , Hiperplasia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Queratinócitos/fisiologia , Antígeno Ki-67/metabolismo , Luciferases/biossíntese , Luciferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Técnicas de Cultura de Tecidos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
8.
Cell Death Differ ; 18(4): 581-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21293492

RESUMO

Neutrophil extracellular traps (NETs) are chromatin structures loaded with antimicrobial molecules. They can trap and kill various bacterial, fungal and protozoal pathogens, and their release is one of the first lines of defense against pathogens. In vivo, NETs are released during a form of pathogen-induced cell death, which was recently named NETosis. Ex vivo, both dead and viable neutrophils can be stimulated to release NETs composed of either nuclear or mitochondrial chromatin, respectively. In certain pathological conditions, NETs are associated with severe tissue damage or certain auto-immune diseases. This review describes the recent progress made in the identification of the mechanisms involved in NETosis and discusses its interplay with autophagy and apoptosis.


Assuntos
Apoptose , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Anti-Infecciosos/metabolismo , Espaço Extracelular/imunologia , Humanos , Neutrófilos/fisiologia , Superóxidos/metabolismo
9.
Cell Death Differ ; 18(3): 506-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20966961

RESUMO

In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Processamento de Proteína Pós-Traducional , Benzoquinonas/farmacologia , Proteínas de Transporte/química , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Células HEK293 , Células HeLa , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Lactamas Macrocíclicas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
10.
Cell Death Dis ; 1: e18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21364619

RESUMO

Autophagy and apoptosis are two important and interconnected stress-response mechanisms. However, the molecular interplay between these two pathways is not fully understood. To study the fate and function of autophagic proteins at the onset of apoptosis, we used a cellular model system in which autophagy precedes apoptosis. IL-3 depletion of Ba/F3 cells caused caspase (casp)-mediated cleavage of Beclin-1 and PI3KC3, two crucial components of the autophagy-inducing complex. We identified two casp cleavage sites in Beclin-1, TDVD(133) and DQLD(149), cleavage at which yields fragments lacking the autophagy-inducing capacity. Noteworthy, the C-terminal fragment, Beclin-1-C, localized predominantly at the mitochondria and sensitized the cells to apoptosis. Moreover, on isolated mitochondria, recombinant Beclin-1-C was able to induce the release of proapoptotic factors. These findings point to a mechanism by which casp-dependent generation of Beclin-1-C creates an amplifying loop enhancing apoptosis upon growth factor withdrawal.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Autofagia , Caspases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Linhagem Celular , Humanos , Interleucina-3/genética , Interleucina-3/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Cell Death Differ ; 12 Suppl 2: 1497-508, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16247497

RESUMO

Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Células Epidérmicas , Queratinócitos/citologia , Animais , Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Epiderme/ultraestrutura , Humanos , Queratinócitos/ultraestrutura , Proteínas Mitocondriais/fisiologia , Peptídeo Hidrolases/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia , Transglutaminases/fisiologia
13.
J Invest Dermatol ; 115(6): 1148-51, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11121154

RESUMO

Programmed cell death of epidermal keratinocytes (KC) results in the formation of cornified cells, which constitute the outermost skin layer, the stratum corneum. Here we show by reverse transcription-polymerase chain reaction, western blot, and immunohistochemistry that epidermal KC express caspase-14, a member of the caspase family of pro-apoptotic proteases, in a tissue-specific manner. Caspase-14 protein abundance strongly increases during terminal differentiation of KC in vivo and in vitro. Under conditions that lead to stratum corneum formation caspase-14 cleavage products, which indicate proenzyme activation, appeared in the KC lysates. Cleavage of the enzyme was also detected in lysates from normal human epidermis and in extracts of stratum corneum. Our findings demonstrate that caspase-14 is activated during KC differentiation and strongly suggest that it is involved in the formation of the human skin barrier.J Invest Dermatol 115:1148-1151 2000


Assuntos
Caspases/metabolismo , Queratinócitos/citologia , Pele/citologia , Caspase 14 , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Ativação Enzimática/fisiologia , Humanos
14.
Cell Death Differ ; 7(12): 1218-24, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11175259

RESUMO

The epidermis is a stratified squamous epithelium in which keratinocytes progressively undergo terminal differentiation towards the skin surface leading to programmed cell death. In this respect we studied the role of caspases. Here, we show that caspase-14 synthesis in the skin is restricted to differentiating keratinocytes and that caspase-14 processing is associated with terminal epidermal differentiation. The pro-apoptotic executioner caspases-3, -6, and -7 are not activated during epidermal differentiation. Caspase-14 does not participate in apoptotic pathways elicited by treatment of differentiated keratinocytes with various death-inducing stimuli, in contrast to caspase-3. In addition, we show that non-cornifying oral keratinocyte epithelium does not express caspase-14 and that the parakeratotic regions of psoriatic skin lesions contain very low levels of caspase-14 as compared to normal stratum corneum. These observations strongly suggest that caspase-14 is involved in the keratinocyte terminal differentiation program leading to normal skin cornification, while the executioner caspases are not implicated. Cell Death and Differentiation (2000) 7, 1218 - 1224


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Diferenciação Celular/fisiologia , Epiderme/enzimologia , Epiderme/fisiologia , Animais , Caspase 14 , Caspase 3 , Caspase 6 , Caspase 7 , Células Cultivadas , Células Epidérmicas , Feto , Humanos , Imuno-Histoquímica , Queratinócitos/citologia , Queratinócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/enzimologia , Psoríase/patologia , Psoríase/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...