Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 15(4)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552982

RESUMO

Age-related musculoskeletal disorders, including osteoporosis, are frequent and associated with long lasting morbidity, in turn significantly impacting on healthcare system sustainability. There is therefore a compelling need to develop reliable preclinical models of disease and drug screening to validate novel drugs possibly on a personalized basis, without the need ofin vivoassay. In the context of bone tissue, although the osteocyte (Oc) network is a well-recognized therapeutic target, currentin vitropreclinical models are unable to mimic its physiologically relevant and highly complex structure. To this purpose, several features are needed, including an osteomimetic extracellular matrix, dynamic perfusion, and mechanical cues (e.g. shear stress) combined with a three-dimensional (3D) culture of Oc. Here we describe, for the first time, a high throughput microfluidic platform based on 96-miniaturized chips for large-scale preclinical evaluation to predict drug efficacy. We bioengineered a commercial microfluidic device that allows real-time visualization and equipped with multi-chips by the development and injection of a highly stiff bone-like 3D matrix, made of a blend of collagen-enriched natural hydrogels loaded with hydroxyapatite nanocrystals. The microchannel, filled with the ostemimetic matrix and Oc, is subjected to passive perfusion and shear stress. We used scanning electron microscopy for preliminary material characterization. Confocal microscopy and fluorescent microbeads were used after material injection into the microchannels to detect volume changes and the distribution of cell-sized objects within the hydrogel. The formation of a 3D dendritic network of Oc was monitored by measuring cell viability, evaluating phenotyping markers (connexin43, integrin alpha V/CD51, sclerostin), quantification of dendrites, and responsiveness to an anabolic drug. The platform is expected to accelerate the development of new drug aimed at modulating the survival and function of osteocytes.


Assuntos
Osso e Ossos , Osteócitos , Colágeno/química , Hidrogéis , Dispositivos Lab-On-A-Chip
2.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831562

RESUMO

The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors.

3.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831016

RESUMO

Osteosarcoma is the most frequent primary malignant bone tumour with an impressive tendency to metastasise. Highly proliferative tumour cells release a remarkable amount of protons into the extracellular space that activates the NF-kB inflammatory pathway in adjacent stromal cells. In this study, we further validated the correlation between tumour glycolysis/acidosis and its role in metastases. In patients, at diagnosis, we found high circulating levels of inflammatory mediators (IL6, IL8 and miR-136-5p-containing extracellular vesicles). IL6 serum levels significantly correlated with disease-free survival and 18F-FDG PET/CT uptake, an indirect measurement of tumour glycolysis and, hence, of acidosis. In vivo subcutaneous and orthotopic models, co-injected with mesenchymal stromal (MSC) and osteosarcoma cells, formed an acidic tumour microenvironment (mean pH 6.86, as assessed by in vivo MRI-CEST pH imaging). In these xenografts, we enlightened the expression of both IL6 and the NF-kB complex subunit in stromal cells infiltrating the tumour acidic area. The co-injection with MSC also significantly increased lung metastases. Finally, by using 3D microfluidic models, we directly showed the promotion of osteosarcoma invasiveness by acidosis via IL6 and MSC. In conclusion, osteosarcoma-associated MSC react to intratumoural acidosis by triggering an inflammatory response that, in turn, promotes tumour invasiveness at the primary site toward metastasis development.

4.
Front Cell Dev Biol ; 9: 760667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047495

RESUMO

As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.

5.
J Mater Sci Mater Med ; 31(3): 26, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060637

RESUMO

The regeneration of injured or damaged tissues by cell delivery approaches requires the fabrication of cell carriers (e.g., microspheres, MS) that allow for cell delivery to limit cells spreading from the injection site. Ideal MS for cell delivery should allow for cells adhesion and proliferation on the MS before the injection, while they should allow for viable cells release after the injection to promote the damaged tissue regeneration. We optimized a water-in-oil emulsion method to obtain gelatin MS crosslinked by methylenebisacrylamide (MBA). The method we propose allowed obtaining spherical, chemically crosslinked MS characterized by a percentage crosslinking degree of 74.5 ± 2.1%. The chemically crosslinked gelatin MS are characterized by a diameter of 70.9 ± 17.2 µm in the dry state and, at swelling plateau in culture medium at 37 °C, by a diameter of 169.3 ± 41.3 µm. The MS show dimensional stability up to 28 days, after which they undergo complete degradation. Moreover, during their degradation, MS release gelatin that can improve the engraftment of cells in the injured site. The produced MS did not induce any cytotoxic effect in vitro and they supported viable L929 fibroblasts adhesion and proliferation. The MS released viable cells able to colonize and proliferate on the tissue culture plastic, used as release substrate, potentially proving their ability in supporting a simplified in vitro wound healing process, thus representing an optimal tool for cell delivery applications.


Assuntos
Emulsões/química , Fibroblastos/efeitos dos fármacos , Gelatina/química , Microesferas , Óleos/química , Água/química , Acrilamidas/farmacologia , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...