RESUMO
The potential use of magnetic nanoparticles (MNPs) in biomedicine as magnetic resonance, drug delivery, imagenology, hyperthermia, biosensors, and biological separation has been studied in different laboratories. One of the challenges on MNP elaboration for biological applications is the size, biocompatibility, heat efficiency, stabilization in physiological conditions, and surface coating. Magnetoliposome (ML), a lipid bilayer of phospholipids encapsulating MNPs, is a system used to reduce toxicity. Encapsulated MNPs can be used as a potential drug and a gene delivery system, and in the presence of magnetic fields, MLs can be accumulated in a target tissue by a strong gradient magnetic field. Here, we present a study of the effects of DC magnetic fields on encapsulated MNPs inside liposomes. Despite their widespread applications in biotechnology and environmental, biomedical, and materials science, the effects of magnetic fields on MLs are unclear. We use a modified coprecipitation method to synthesize superparamagnetic nanoparticles (SNPs) in aqueous solutions. The SNPs are encapsulated inside phospholipid liposomes to study the interaction between phospholipids and SNPs. Material characterization of SNPs reveals round-shaped nanoparticles with an average size of 12 nm, mainly magnetite. MLs were prepared by the rehydration method. After formation, we found two types of MLs: one type is tense with SNPs encapsulated and the other is a floppy vesicle that does not show the presence of SNPs. To study the response of MLs to an applied DC magnetic field, we used a homemade chamber. Digitalized images show encapsulated SNPs assembled in chain formation when a DC magnetic field is applied. When the magnetic field is switched off, it completely disperses SNPs. Floppy MLs deform along the direction of the external applied magnetic field. Solving the relevant magnetostatic equations, we present a theoretical model to explain the ML deformations by analyzing the forces exerted by the magnetic field over the surface of the spheroidal liposome. Tangential magnetic forces acting on the ML surface result in a press force deforming MLs. The type of deformations will depend on the magnetic properties of the mediums inside and outside the MLs. The model predicts a coexistence region of oblate-prolate deformation in the zone where χ = 1. We can understand the chain formation in terms of a dipole-dipole interaction of SNP.
RESUMO
The time-evolution equation for the time-dependent static structure factor of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory was used to investigate the kinetics of glass-forming systems under isochoric conditions. The kinetics are studied within the framework of the fictive temperature (TF) of the glassy structure. We solve for the kinetics of TF(t) and the time-dependent structure factor and find that they are different but closely related by a function that depends only on temperature. Furthermore, we are able to solve for the evolution of TF(t) in a set of temperature-jump histories referred to as the Kovacs' signatures. We demonstrate that the NE-SCGLE theory reproduces all the Kovacs' signatures, namely, intrinsic isotherm, asymmetry of approach, and memory effect. In addition, we extend the theory into largely unexplored, deep glassy state, regions that are below the notionally "ideal" glass temperature.
RESUMO
In the present work, the Non-Equilibrium Self-Consistent Generalized Langevin Equation (NESCGLE) theory is used to predict the final state of glass-forming liquids subjected to different cooling processes. We show that the NESCGLE theory correctly describes two essential features of the glass transition. Such features are the structural recovery and the dependence of the final state with the cooling rate. We demonstrate that below a particular temperature Tc, the system is unable to equilibrate, independently of the cooling rate. We show that the equilibrium state is only reached for the quasistatic process. Additionally, we show how, from the NESCGLE theory, it is possible to deduce a relaxation model of structural recovery, for which we obtain molecular expressions of the parameters.