Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 8(6): 1462-1468, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31051075

RESUMO

Promoters are key components of cell factory design, allowing precise expression of genes in a heterologous pathway. Several commonly used promoters in yeast cell factories belong to glycolytic genes, highly expressed in actively growing yeast when glucose is used as a carbon source. However, their expression can be suboptimal when alternate carbon sources are used, or if there is a need to decouple growth from production. Hence, there is a need for alternate promoters for different carbon sources and production schemes. In this work, we demonstrate a reversal of regulatory function in two glycolytic yeast promoters by replacing glycolytic regulatory elements with ones induced by the diauxic shift. We observe a shift in induction from glucose-rich to glucose-poor medium without loss of regulatory activity, and strong ethanol induction. Applications of these promoters were validated for expression of the vanillin biosynthetic pathway, reaching production of vanillin comparable to pathway designs using strong constitutive promoters.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Engenharia Genética/métodos , Glicólise/genética , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Benzaldeídos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Microb Cell Fact ; 18(1): 50, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857529

RESUMO

BACKGROUND: The physiological characterization of microorganisms provides valuable information for bioprocess development. Chemostat cultivations are a powerful tool for this purpose, as they allow defined changes to one single parameter at a time, which is most commonly the growth rate. The subsequent establishment of a steady state then permits constant variables enabling the acquisition of reproducible data sets for comparing microbial performance under different conditions. We performed physiological characterizations of a 3-hydroxypropionic acid (3-HP) producing Saccharomyces cerevisiae strain in a miniaturized and parallelized chemostat cultivation system. The physiological conditions under investigation were various growth rates controlled by different nutrient limitations (C, N, P). Based on the cultivation parameters obtained subsequent fed-batch cultivations were designed. RESULTS: We report technical advancements of a small-scale chemostat cultivation system and its applicability for reliable strain screening under different physiological conditions, i.e. varying dilution rates and different substrate limitations (C, N, P). Exploring the performance of an engineered 3-HP producing S. cerevisiae strain under carbon-limiting conditions revealed the highest 3-HP yields per substrate and biomass of 16.6 %C-mol and 0.43 g gCDW-1, respectively, at the lowest set dilution rate of 0.04 h-1. 3-HP production was further optimized by applying N- and P-limiting conditions, which resulted in a further increase in 3-HP yields revealing values of 21.1 %C-mol and 0.50 g gCDW-1 under phosphate-limiting conditions. The corresponding parameters favoring an increased 3-HP production, i.e. dilution rate as well as C- and P-limiting conditions, were transferred from the small-scale chemostat cultivation system to 1-L bench-top fermenters operating in fed-batch conditions, revealing 3-HP yields of 15.9 %C-mol and 0.45 g gCDW-1 under C-limiting, as well as 25.6 %C-mol and 0.50 g gCDW-1 under phosphate-limiting conditions. CONCLUSIONS: Small-scale chemostat cultures are well suited for the physiological characterization of microorganisms, particularly for investigating the effect of changing cultivation parameters on microbial performance. In our study, optimal conditions for 3-HP production comprised (i) a low dilution rate of 0.04 h-1 under carbon-limiting conditions and (ii) the use of phosphate-limiting conditions. Similar 3-HP yields were achieved in chemostat and fed-batch cultures under both C- and P-limiting conditions proving the growth rate as robust parameter for process transfer and thus the small-scale chemostat system as powerful tool for process optimization.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Ácido Láctico/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Biomassa , Reatores Biológicos , Carbono/metabolismo , Meios de Cultura , Fermentação , Ácido Láctico/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Metab Eng ; 48: 288-296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981865

RESUMO

Here we describe a method for robust directed evolution using mutagenesis of large sequence spaces in their genomic contexts. The method employs error-prone PCR and Cas9-mediated genome integration of mutant libraries of large-sized donor variants into single or multiple genomic sites with efficiencies reaching 98-99%. From sequencing of genome integrants, we determined that the mutation frequency along the donor fragments is maintained evenly and successfully integrated into the genomic target loci, indicating that there is no bias of mutational load towards the proximity of the double strand break. To validate the applicability of the method for directed evolution of metabolic gene products we engineered two essential enzymes in the mevalonate pathway of Saccharomyces cerevisiae with selected variants supporting up to 11-fold higher production of isoprenoids. Taken together, our method extends on existing CRISPR technologies by facilitating efficient mutagenesis of hundreds of nucleotides in cognate genomic contexts.


Assuntos
Sistemas CRISPR-Cas , Evolução Molecular Direcionada/métodos , Genoma Fúngico , Saccharomyces cerevisiae , Ácido Mevalônico/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
FEBS J ; 284(4): 654-665, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28075062

RESUMO

NAD(P)-malic enzyme (NAD(P)-ME) catalyzes the reversible oxidative decarboxylation of malate to pyruvate, CO2 , and NAD(P)H and is present as a multigene family in Arabidopsis thaliana. The carboxylation reaction catalyzed by purified recombinant Arabidopsis NADP-ME proteins is faster than those reported for other animal or plant isoforms. In contrast, no carboxylation activity could be detected in vitro for the NAD-dependent counterparts. In order to further investigate their putative carboxylating role in vivo, Arabidopsis NAD(P)-ME isoforms, as well as the NADP-ME2del2 (with a decreased ability to carboxylate pyruvate) and NADP-ME2R115A (lacking fumarate activation) versions, were functionally expressed in the cytosol of pyruvate carboxylase-negative (Pyc- ) Saccharomyces cerevisiae strains. The heterologous expression of NADP-ME1, NADP-ME2 (and its mutant proteins), and NADP-ME3 restored the growth of Pyc- S. cerevisiae on glucose, and this capacity was dependent on the availability of CO2 . On the other hand, NADP-ME4, NAD-ME1, and NAD-ME2 could not rescue the Pyc- strains from C4 auxotrophy. NADP-ME carboxylation activity could be measured in leaf crude extracts of knockout and overexpressing Arabidopsis lines with modified levels of NADP-ME, where this activity was correlated with the amount of NADP-ME2 transcript. These results indicate that specific A. thaliana NADP-ME isoforms are able to play an anaplerotic role in vivo and provide a basis for the study on the carboxylating activity of NADP-ME, which may contribute to the synthesis of C4 compounds and redox shuttling in plant cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Malato Desidrogenase (NADP+)/genética , Malatos/metabolismo , NADP/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Clonagem Molecular , Expressão Gênica , Teste de Complementação Genética , Engenharia Genética , Glucose/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Malato Desidrogenase (NADP+)/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Transformação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...