Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-413443

RESUMO

The novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) enters its host cells after binding to the angiotensin-converting enzyme 2 (ACE2) via its spike glycoprotein. This interaction is critical for virus entry and virus-host membrane fusion. Soluble ACE2 ectodomains bind and neutralize the virus but the short in vivo half-lives of soluble ACE2 limits its therapeutic use. Fusion of the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain can prolong the in vivo half-life but bears the risk of unwanted Fc-receptor activation and antibody-dependent disease enhancement. Here, we describe optimized ACE2-Fc fusion constructs that avoid Fc-receptor binding by using IgG4-Fc as a fusion partner. The engineered ACE2-IgG4-Fc fusion proteins described herein exhibit promising pharmaceutical properties and a broad antiviral activity at single-digit nanomolar concentration. In addition, they allow to maintain the beneficial enzymatic activity of ACE2 and thus are very promising candidate antivirals broadly acting against coronaviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...