Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(5): 1750-5, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23322737

RESUMO

Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.


Assuntos
Ecossistema , Pesqueiros/estatística & dados numéricos , Sedimentos Geológicos/análise , Salmão/crescimento & desenvolvimento , Alaska , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Ecologia/métodos , Ecologia/tendências , Pesqueiros/métodos , Geografia , Radioisótopos de Chumbo/análise , Isótopos de Nitrogênio/análise , Oceano Pacífico , Dinâmica Populacional , Datação Radiométrica/métodos , Fatores de Tempo
2.
Science ; 334(6062): 1545-8, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22174250

RESUMO

Humans have more than doubled the amount of reactive nitrogen (Nr) added to the biosphere, yet most of what is known about its accumulation and ecological effects is derived from studies of heavily populated regions. Nitrogen (N) stable isotope ratios ((15)N:(14)N) in dated sediments from 25 remote Northern Hemisphere lakes show a coherent signal of an isotopically distinct source of N to ecosystems beginning in 1895 ± 10 years (±1 standard deviation). Initial shifts in N isotope composition recorded in lake sediments coincide with anthropogenic CO(2) emissions but accelerate with widespread industrial Nr production during the past half century. Although current atmospheric Nr deposition rates in remote regions are relatively low, anthropogenic N has probably influenced watershed N budgets across the Northern Hemisphere for over a century.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...