Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279174

RESUMO

BackgroundIn March 2020 the South African COVID-19 Modelling Consortium was formed to support government planning for COVID-19 cases and related healthcare. Models were developed jointly by local disease modelling groups to estimate cases, resource needs and deaths due to COVID-19. MethodsThe National COVID-19 Epi Model (NCEM) while initially developed as a deterministic compartmental model of SARS-Cov-2 transmission in the nine provinces of South Africa, was adapted several times over the course of the first wave of infection in response to emerging local data and changing needs of government. By the end of the first wave, the NCEM had developed into a stochastic, spatially-explicit compartmental transmission model to estimate the total and reported incidence of COVID-19 across the 52 districts of South Africa. The model adopted a generalised Susceptible-Exposed-Infectious-Removed structure that accounted for the clinical profile of SARS-COV-2 (asymptomatic, mild, severe and critical cases) and avenues of treatment access (outpatient, and hospitalisation in non-ICU and ICU wards). ResultsBetween end-March and early September 2020, the model was updated several times to generate new sets of projections and scenario analyses to be shared with planners in the national and provincial Departments of Health, the National Treasury and other partners in a variety of formats such as presentations, reports and dashboards. Updates to model structure included finer spatial granularity, limited access to treatment, and the inclusion of behavioural heterogeneity in relation to the adoption of Public Health and Social Measures. These updates were made in response to local data and knowledge and the changing needs of the planners. ConclusionsThe NCEM attempted to incorporate a high level of local data to contextualise the model appropriately to address South Africas population and health system characteristics. Origin and contextualisation of data and understanding of the populations interaction with the health system played a vital role in producing and updating estimates of resource needs, demonstrating the importance of harnessing and developing local modelling capacity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279123

RESUMO

BackgroundThe South African COVID-19 Modelling Consortium (SACMC) was established in late March 2020 to support planning and budgeting for COVID-19 related healthcare in South Africa. We developed several tools in response to the needs of decision makers in the different stages of the epidemic, allowing the South African government to plan several months ahead of time. MethodsOur tools included epidemic projection models, several cost and budget impact models, and online dashboards to help government and the public visualise our projections, track case development and forecast hospital admissions. Information on new variants, including Delta and Omicron, were incorporated in real time to allow the shifting of scarce resources when necessary. ResultsGiven the rapidly changing nature of the outbreak globally and in South Africa, the model projections were updated regularly. The updates reflected 1) the changing policy priorities over the course of the epidemic; 2) the availability of new data from South African data systems; and 3) the evolving response to COVID-19 in South Africa such as changes in lockdown levels and ensuing mobility and contact rates, testing and contact tracing strategies, and hospitalisation criteria. Insights into population behaviour required updates by incorporating notions of behavioural heterogeneity and behavioural responses to observed changes in mortality. We incorporated these aspects into developing scenarios for the third wave and developed additional methodology that allowed us to forecast required inpatient capacity. Finally, real-time analyses of the most important characteristics of the Omicron variant first identified in South Africa in November 2021 allowed us to advise policymakers early in the fourth wave that a relatively lower admission rate was likely. ConclusionThe SACMCs models, developed rapidly in an emergency setting and regularly updated with local data, supported national and provincial government to plan several months ahead of time, expand hospital capacity when needed, allocate budgets, and procure additional resources where possible. Across four waves of COVID-19 cases, the SACMC continued to serve the planning needs of the government, tracking waves and supporting the national vaccine rollout.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20200196

RESUMO

BackgroundSouth Africa recently experienced a first peak in COVID-19 cases and mortality. Dexamethasone and remdesivir both have the potential to reduce COVID-related mortality, but their cost-effectiveness in a resource-limited setting with scant intensive care resources is unknown. MethodsWe projected intensive care unit (ICU) needs and capacity from August 2020 to January 2021 using the South African National COVID-19 Epi Model. We assessed cost-effectiveness of 1) administration of dexamethasone to ventilated patients and remdesivir to non-ventilated patients, 2) dexamethasone alone to both non-ventilated and ventilated patients, 3) remdesivir to non-ventilated patients only, and 4) dexamethasone to ventilated patients only; all relative to a scenario of standard care. We estimated costs from the healthcare system perspective in 2020 USD, deaths averted, and the incremental cost effectiveness ratios of each scenario. ResultsRemdesivir for non-ventilated patients and dexamethasone for ventilated patients was estimated to result in 1,111 deaths averted (assuming a 0-30% efficacy of remdesivir) compared to standard care, and save $11.5 million. The result was driven by the efficacy of the drugs, and the reduction of ICU-time required for patients treated with remdesivir. The scenario of dexamethasone alone to ventilated and non-ventilated patients requires additional $159,000 and averts 1,146 deaths, resulting in $139 per death averted, relative to standard care. ConclusionsThe use of dexamethasone for ventilated and remdesivir for non-ventilated patients is likely to be cost-saving compared to standard care. Given the economic and health benefits of both drugs, efforts to ensure access to these medications is paramount. 40-word summary of articles main pointThe use of remdesivir and dexamethasone for treatment of severe COVID-19 in South Africa is likely to be cost-saving relative to standard care. Enabling access to these medications should be prioritize to improve patient outcomes and reduce total costs.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20127084

RESUMO

Countries such as South Africa have limited intensive care unit (ICU) capacity to handle the expected number of COVID-19 patients requiring ICU care. Remdesivir can prevent deaths in countries such as South Africa by decreasing the number of days people spend in ICU, therefore freeing up ICU bed capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA