Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425483

RESUMO

Blood plasma analyses can provide researchers, aquaculture facilities and fisheries managers with valuable insights into the physiological state and welfare of fish. For example, glucose and lactate are part of the secondary stress response system, and elevated concentrations are indicators of stress. However, analysing blood plasma in the field can be logistically difficult and typically involves sample storage and transport to quantify concentrations in a laboratory setting. Portable glucose and lactate meters offer an alternative to laboratory assays and have shown to be relatively accurate in fish, but these tools have only been validated for a few fish species. The objective of this study was to investigate if portable meters could be reliably used in Chinook salmon (Oncorhynchus tshawytscha). As part of a larger stress response study, juvenile Chinook salmon (157 ± 17 mm fork length [mean ± standard deviation; SD]) were exposed to stress-inducing treatments and sampled for blood. Laboratory reference glucose concentrations (milligrams per deciliter; mg/dl; n = 70) were positively correlated with the Accu-Check Aviva meter (Roche Diagnostics, Indianapolis, IN) measurements (R2 = 0.79), although glucose values were 1.21 ± 0.21 (mean ± SD) times higher in the laboratory than with the portable meter. Lactate concentrations (milliMolar; mM; n = 52) of the laboratory reference were also positively correlated (R2 = 0.76) with the Lactate Plus meter (Nova Biomedical, Waltham, MA) and were 2.55 ± 0.50 times higher than portable meter. Our results indicate both meters could be used to measure relative glucose and lactate concentrations in Chinook salmon and provide fisheries professionals with a valuable tool, particularly in remote field settings.

2.
J Vis Exp ; (145)2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-30933069

RESUMO

Juvenile Pacific Lamprey and American eels were used for laboratory evaluations to determine potential effects from tag implantation. Telemetry technology has been identified as a way to obtain more detailed information on movement and behavior across a broader spatial scale than is possible with other known technology. The purpose of this method is to provide a detailed step by step instruction on tag implantation for both lampreys and eel. For laboratory studies using actively migrating juvenile Pacific Lamprey (120-160 mm), we determined that the presence of the tag did not alter the swimming ability between tagged and untagged Individuals or have any significant tag loss (<3%). Similar results were determined during laboratory testing of Yellow phase American Eels (113-175 mm). No mortality occurred during a 38-day holding period and there was minimal tag loss (3.8%). The presence of the tag did not have any significant effect on the swimming ability or survival of tagged eels compared to untagged controls and there was minimal tag loss.


Assuntos
Acústica , Enguias/fisiologia , Lampreias/fisiologia , Animais , Natação/fisiologia , Raios X
3.
Conserv Physiol ; 1(1): cot017, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27293601

RESUMO

We quantified nutritional and stress parameters (alkaline phosphatase, cholesterol, protein, triglycerides, cortisol, and glucose) in invasive silver carp (Hypophthalmichthys molitrix) inhabiting four large rivers throughout three distinct time periods in the Midwestern USA. Examining the basic biology and ecology of an invasive species is crucial to gain an understanding of the interaction between an organism and its environment. Analysis of the physiological condition of wild-caught silver carp across broad spatial and temporal scales is essential because stress and nutritional parameters can link individuals to their habitats and vary among populations across environments. During each time period, we collected blood samples from individual silver carp in the Illinois River and portions of the Mississippi, Ohio, and Wabash rivers in Illinois. We tested for relationships between silver carp nutrition and stress across rivers, reaches within rivers, and time periods. Principal component analyses separated physiological parameters into a stress component (cortisol and glucose) and two nutritional components representative of short-term feeding (alkaline phosphatase, protein, and triglycerides) and body energy reserves (cholesterol and protein). Akaike's information criterion suggested that time period had the greatest influence on stress. Stress levels were consistent in all four rivers, and declined across time periods. Akaike's information criterion also suggested that interactions of time period and river had the greatest influence on short-term feeding and body energy reserves. There was no specific pattern across time periods within each river, nor was there a pattern across rivers. Our results provide a better understanding of nutritional and stress conditions in invasive silver carp across a broad landscape and temporal scale, with implications for managing and predicting the spread of this species.

4.
Artigo em Inglês | MEDLINE | ID: mdl-21601646

RESUMO

Longline fishing is the most common elasmobranch capture method around the world, yet the physiological consequences of this technique are poorly understood. To quantify the sub-lethal effects of longline capture in the commonly exploited Caribbean reef shark (Carcharhinus perezi), 37 individuals were captured using standard, mid-water longlines. Hook timers provided hooking duration to the nearest minute. Once sharks were landed, blood samples were taken and used to measure a suite of physiological parameters. Control data were obtained by sampling an additional three unrestrained Caribbean reef sharks underwater at an established shark feeding site. The greatest level of physiological disruption occurred after 120-180min of hooking, whereas sharks exposed to minimal and maximal hook durations exhibited the least disturbed blood chemistry. Significant relationships were established between hooking duration and blood pH, pCO(2), lactate, glucose, plasma calcium and plasma potassium. Longline capture appears more benign than other methods assessed to date, causing a shift in the stress response from acute at the onset of capture to a sub-acute regime as the capture event progresses, apparently facilitating a degree of physiological recovery. Continued investigation into the physiological response of elasmobranchs to longline capture is vital for the effective management of such fisheries.


Assuntos
Restrição Física , Tubarões/fisiologia , Estresse Fisiológico , Animais , Região do Caribe , Tubarões/sangue , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...