Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29482122

RESUMO

Hypotension is the dose-limiting side effect of the radio-protective drug Amifostine and results from relaxation of the vascular smooth muscle, which is directly mediated by the active metabolite, WR-1065, of Amifostine. The route of administration (currently FDA-approved only for intravenous administration) and the rapid metabolic conversion of Amifostine combine to yield high systemic levels of WR-1065 and facilitate the onset of hypotension. Research efforts aiming to optimize the delivery of WR-1065 to maintain efficacy while reducing its peak, systemic concentration below levels that induce hypotension are underway. To fully characterize the effect of reduced dose levels and alternative routes of administration of Amifostine on systemic WR-1065 concentrations, improved analytical techniques are needed. We have developed and evaluated a highly sensitive method for measuring WR-1065 in rat plasma that employs chemical derivatization, protein precipitation and UPLC-MS/MS analysis. The method exhibits a limit of quantification (LOQ) of 7.4 nM in plasma, which is a significant improvement over conventional approaches that utilize LC-electrochemical detection (ECD) (LOQ 150 nM or higher). The method was assessed in a pharmacokinetics study in rats administered Amifostine intravenously and via direct jejunal injection (10 mg/kg each route). The bioavailability of WR-1065 was 61.5% after direct jejunal injection indicating rapid conversion and absorption of the metabolite in the intestinal tract. This demonstrates that an oral formulation of Amifostine designed for site-specific release of the drug in the upper GI tract can deliver systemic absorption/conversion to WR-1065, provided that the formulation protects the therapeutic from gastric decomposition in the stomach.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Mercaptoetilaminas/sangue , Protetores contra Radiação/análise , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Modelos Lineares , Masculino , Mercaptoetilaminas/química , Mercaptoetilaminas/farmacocinética , Protetores contra Radiação/química , Protetores contra Radiação/farmacocinética , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
J Lipid Res ; 54(8): 2095-2108, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709692

RESUMO

ETC-1002 is an investigational drug currently in Phase 2 development for treatment of dyslipidemia and other cardiometabolic risk factors. In dyslipidemic subjects, ETC-1002 not only reduces plasma LDL cholesterol but also significantly attenuates levels of hsCRP, a clinical biomarker of inflammation. Anti-inflammatory properties of ETC-1002 were further investigated in primary human monocyte-derived macrophages and in in vivo models of inflammation. In cells treated with ETC-1002, increased levels of AMP-activated protein kinase (AMPK) phosphorylation coincided with reduced activity of MAP kinases and decreased production of proinflammatory cytokines and chemokines. AMPK phosphorylation and inhibitory effects of ETC-1002 on soluble mediators of inflammation were significantly abrogated by siRNA-mediated silencing of macrophage liver kinase B1 (LKB1), indicating that ETC-1002 activates AMPK and exerts its anti-inflammatory effects via an LKB1-dependent mechanism. In vivo, ETC-1002 suppressed thioglycollate-induced homing of leukocytes into mouse peritoneal cavity. Similarly, in a mouse model of diet-induced obesity, ETC-1002 restored adipose AMPK activity, reduced JNK phosphorylation, and diminished expression of macrophage-specific marker 4F/80. These data were consistent with decreased epididymal fat-pad mass and interleukin (IL)-6 release by inflamed adipose tissue. Thus, ETC-1002 may provide further clinical benefits for patients with cardiometabolic risk factors by reducing systemic inflammation linked to insulin resistance and vascular complications of metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Dicarboxílicos/farmacologia , Ácidos Graxos/farmacologia , Leucócitos/efeitos dos fármacos , Macrófagos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Relação Dose-Resposta a Droga , Humanos , Inflamação , Leucócitos/citologia , Leucócitos/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
3.
Cereb Cortex ; 15(8): 1222-33, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15616135

RESUMO

Primary visual cortex contains multiple maps of features of the visual scene, including visual field position, orientation, direction, ocular dominance and spatial frequency. The complex relationships between these maps provide clues to the strategies the cortex uses for representing and processing information. Here we simulate the combined development of all these map systems using a computational model, the elastic net. We show that this model robustly produces combined maps of these four variables that bear a close resemblance to experimental maps. In addition we show that the experimentally observed effects of monocular deprivation and single-orientation rearing can be reproduced in this model, and we make some testable predictions. These results provide strong support for the hypothesis that cortical representations attempt to optimize a trade-off between coverage and continuity.


Assuntos
Mapeamento Encefálico/métodos , Biologia Computacional/métodos , Modelos Biológicos , Redes Neurais de Computação , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...