Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2220825120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897976

RESUMO

Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.


Assuntos
Fagossomos , Dictyostelium , Forminas/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais , Fagossomos/metabolismo , Actinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(9): 3594-3603, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808751

RESUMO

The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA- /E-/H- and racE- mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.


Assuntos
Citoesqueleto de Actina/genética , Proteínas de Transporte/genética , Proteínas Contráteis/genética , Melanoma Experimental/genética , Citoesqueleto de Actina/química , Actinas/genética , Animais , Sistemas CRISPR-Cas , Movimento Celular/genética , Polaridade Celular/genética , Proteínas Contráteis/química , Dictyostelium/genética , Modelos Animais de Doenças , Forminas , Humanos , Melanoma Experimental/patologia , Camundongos , Microscopia Eletrônica , Contração Muscular/genética , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/genética
3.
Methods Mol Biol ; 1749: 341-350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29526008

RESUMO

Dictyostelium discoideum has proven to be an excellent model to study amoeboid cell migration. During their life cycle, Dictyostelium cells exhibit distinct modes of motility. Individual growth-phase cells explore new territories by random cell migration using the core cell motility machinery, but they can also hunt bacteria by detection and chemotaxis toward the by-product folate. After depletion of nutrients, the cells initiate a developmental program allowing streaming of the cells into aggregation centers by chemotaxis toward cAMP and by cell-to-cell adhesion. Subsequent development is associated with complex rotational movement of the compacted aggregates to drive cell type specific sorting, which in turn is necessary for terminal culmination and formation of fruiting bodies. Here we describe a protocol for the analyses of cell motility of vegetative Dictyostelium cells in unconfined and mechanically confined settings.


Assuntos
Movimento Celular/fisiologia , Dictyostelium/citologia , Quimiotaxia/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Transdução de Sinais/fisiologia
4.
Eur J Cell Biol ; 96(8): 715-727, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28889942

RESUMO

The WAVE regulatory complex (WRC) links upstream Rho-family GTPase signaling to the activation of the ARP2/3 complex in different organisms. WRC-induced and ARP2/3 complex-mediated actin nucleation beneath the plasma membrane is critical for actin assembly in the leading edge to drive efficient cell migration. The WRC is a stable heteropentamer composed of SCAR/WAVE, Abi, Nap, Pir and the small polypeptide Brk1/Hspc300. Functional interference with individual subunits of the complex frequently results in diminished amounts of the remaining polypeptides of the WRC complex, implying the complex to act as molecular entity. However, Abi was also found to associate with mammalian N-WASP, formins, Eps8/SOS1 or VASP, indicating additional functions of individual WRC subunits in eukaryotic cells. To address this issue systematically, we inactivated all WRC subunits, either alone or in combination with VASP in Dictyostelium cells and quantified the protein content of the remaining subunits in respective WRC knockouts. The individual mutants displayed highly differential phenotypes concerning various parameters, including cell morphology, motility, cytokinesis or multicellular development, corroborating the view of additional roles for individual subunits, beyond their established function in WRC-mediated Arp2/3 complex activation. Finally, our data uncover the interaction of the actin polymerase VASP with WRC-embedded Abi to mediate VASP accumulation in cell protrusions, driving efficient cell migration.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Movimento Celular/fisiologia , Dictyostelium , Fosforilação , Subunidades Proteicas , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 113(47): E7464-E7473, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821733

RESUMO

Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas.


Assuntos
Actinas/metabolismo , Dictyostelium/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas ras/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Dictyostelium/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Fagocitose , Pinocitose , Proto-Oncogene Mas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...