Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
World J Diabetes ; 14(1): 35-47, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36684384

RESUMO

Type 2 diabetes mellitus (T2DM) increases the risk of many lethal and debilitating conditions. Among them, foot ulceration due to neuropathy, vascular disease, or trauma affects the quality of life of millions in the United States and around the world. Physiological wound healing is stalled in the inflammatory phase by the chronicity of inflammation without proceeding to the resolution phase. Despite advanced treatment, diabetic foot ulcers (DFUs) are associated with a risk of amputation. Thus, there is a need for novel therapies to address chronic inflammation, decreased angiogenesis, and impaired granulation tissue formation contributing to the non-healing of DFUs. Studies have shown promising results with resolvins (Rv) and anti-inflammatory therapies that resolve inflammation and enhance tissue healing. But many of these studies have encountered difficulty in the delivery of Rv in terms of efficiency, tissue targetability, and immunogenicity. This review summarized the perspective of optimizing the therapeutic application of Rv and cytokines by pairing them with exosomes as a novel strategy for targeted tissue delivery to treat non-healing chronic DFUs. The articles discussing the T2DM disease state, current research on Rv for treating inflammation, the role of Rv in enhancing wound healing, and exosomes as a delivery vehicle were critically reviewed to find support for the proposition of using Rv and exosomes in combination for DFUs therapy. The literature reviewed suggests the beneficial role of Rv and exosomes and exosomes loaded with anti-inflammatory agents as promising therapeutic agents in ulcer healing.

2.
J Clin Med ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36362563

RESUMO

Despite the advancement in the treatment, nonhealing diabetic foot ulcers (DFUs) are an important clinical issue accounting for increased morbidity and risk of amputation. Persistent inflammation, decreased granulation tissue formation, decreased neo-angiogenesis, and infections are common underlying causes of the nonhealing pattern. Fibroblasts play a critical role in granulation tissue formation and angiogenesis and mediate wound healing how fibroblasts regulate inflammation in nonhealing DFUs is a question to ponder. This study aims to investigate the expression of a de-differentiated subpopulation of fibroblasts which are CD40+ (secretory fibroblasts) and increased secretion of IL-6 and IL-8 but have never been reported in DFUs. We characterized 11 DFU tissues and nearby clean tissues histologically and for the presence of inflammation and CD40+ fibroblasts using immunohistochemistry and RT-PCR. The results revealed significantly increased density of CD40+ fibroblasts and differential expression of mediators of inflammation in DFU tissues compared to clean tissue. Increased expression of IL-6, IL-1ß, and TNF-α in DFU tissues along with CD40+ fibroblast suggest that CD40+ fibroblasts in DFUs contribute to the chronicity of inflammation and targeting fibroblasts phenotypic switch to decrease secretory fibroblasts may have therapeutic significance to promote healing.

3.
Adv Sci (Weinh) ; 8(20): e2101912, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396716

RESUMO

Blood exchanges between young and old partners demonstrate old blood has a detrimental effect on brain health of young animals. Previous studies primarily investigate soluble blood factors, such as transforming growth factor-beta, on the brain and the blood-brain barrier (BBB). However, the role of blood cellular components, particularly erythrocytes, has not been defined. Erythrocyte morphology and rigidity change as mammals age, altering their transport within the capillary bed. This impacts downstream biological events, such as the release of reactive oxygen species and hemoglobin, potentially compromising the BBB. Here, a micro electrical BBB (µE-BBB), with cocultured endothelial and astrocytic cells, and a built-in trans-endothelial electrical resistance (TEER) system is described to monitor the effect of capillary shear stress on erythrocytes derived from young and old mice and people and the subsequent effects of these cells on BBB integrity. This is monitored by the passage of fluorescein isothiocyanate-dextran and real-time profiling of TEER across the BBB after old and young erythrocyte exposure. Compared to young erythrocytes, old erythrocytes induce an increased permeability by 42% and diminished TEER by 2.9% of the µE-BBB. These results suggest that changes in circulating erythrocytes are a biomarker of aging in the context of BBB integrity.


Assuntos
Envelhecimento/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Eritrócitos/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade Capilar/genética , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Dextranos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Eritrócitos/patologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Humanos , Camundongos
4.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498573

RESUMO

As the fields of aging and neurological disease expand to liquid biopsies, there is a need to identify informative biomarkers for the diagnosis of neurodegeneration and other age-related disorders such as cancers. A means of high-throughput screening of biomolecules relevant to aging can facilitate this discovery in complex biofluids, such as blood. Exosomes, the smallest of extracellular vesicles, are found in many biofluids and, in recent years, have been found to be excellent candidates as liquid biopsy biomarkers due to their participation in intercellular communication and various pathologies such as cancer metastasis. Recently, exosomes have emerged as novel biomarkers for age-related diseases. Hence, the study of exosomes, their protein and genetic cargo can serve as early biomarkers for age-associated pathologies, especially neurodegenerative diseases. However, a disadvantage of exosome studies includes a lack in standardization of isolating, detecting, and profiling exosomes for downstream analysis. In this review, we will address current techniques for high-throughput isolation and detection of exosomes through various microfluidic and biosensing strategies and how they may be adapted for the detection of biomarkers of age-associated disorders.


Assuntos
Envelhecimento/sangue , Biomarcadores/sangue , Técnicas Analíticas Microfluídicas , Envelhecimento/genética , Envelhecimento/patologia , Exossomos/genética , Humanos , Biópsia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA