Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(34): 15943-15947, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30124715

RESUMO

The international drive to measure accurate number concentrations of nanoparticles is impeded by the typically heterogeneous populations of non-spherical nanoparticles. The irregular shape and size of "50 nm" silver nanoparticles is studied using Electron Tomography. It is evidenced that even for highly symmetrical particles the volume can be over 20% less than that of the circumscribed sphere; more irregularly shaped particles can have volumes of over 45% less. On this basis, criteria are provided to determine the particle sphericity from 2D projections obtained from Electron Microscopy, including an empirical method for particle volume estimation. The results allow the visualisation of irregularly shaped particles, revealing the presence of previously unseen voids in the nanoparticle structure. Comparison of tomographic data with other commonly used particle-sizing methods exposes the limitations of these methods in studying nanoparticle populations that exhibit heterogeneity.

2.
ChemistryOpen ; 7(5): 370-380, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29872612

RESUMO

The oxidation of silver nanoparticles is induced to occur near to, but not at, an electrode surface. This reaction at a distance from the electrode is studied through the use of dark-field microscopy, allowing individual nanoparticles and their reaction with the electrode product to be visualized. The oxidation product diffuses away from the electrode and oxidizes the nanoparticles in a reaction layer, resulting in their destruction. The kinetics of the silver nanoparticle solution-phase reaction is shown to control the length scale over which the nanoparticles react. In general, the new methodology offers a route by which nanoparticle reactivity can be studied close to an electrode surface.

3.
Phys Chem Chem Phys ; 20(19): 13537-13546, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29726865

RESUMO

Herein we provide a generic framework for use in the acquisition and analysis of the electrochemical responses of individual nanoparticles, summarising aspects that must be considered to avoid mis-interpretation of data. Specifically, we threefold highlight the importance of the nanoparticle shape, the effect of the nanoparticle diffusion coefficient on the probability of it being observed and the influence of the used measurement bandwidth. Using the oxidation of silver nanoparticles as a model system, it is evidenced that when all of the above have been accounted for, the experimental data is consistent with being associated with the complete oxidation of the nanoparticles (50 nm diameter). The duration of many single nanoparticle events are found to be ca. milliseconds in duration over a range of experiments. Consequently, the insight that the use of lower frequency filtered data yields a more accurate description of the charge passed during a nano-event is likely widely applicable to this class of experiment; thus we report a generic methodology. Conversely, information regarding the dynamics of the nano redox event is obscured when using such lower frequency measurements; hence, both data sets are complementary and are required to provide full insight into the behaviour of the reactions at the nanoscale.

4.
Anal Chem ; 88(22): 11213-11221, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27748588

RESUMO

The lipid soluble fluorophore Nile Red (9-diethylamino-5-benzo[α]phenoxazinone) is used to fluorescently and electrochemically label an organic-in-water emulsion, where the organic phase is an ionic liquid [P6,6,6,14][FAP]/toluene mixture. The optical detection of the individual droplets is enabled facilitating the in situ tracking and sizing of the suspended particles (average diameter = 530 nm, interquartile range = 180 nm). Through the use of a combined thin-layer optical/electrochemical cell, the irreversible accumulation of the droplets at an optically opaque carbon fiber electrode (diameter ∼7.5 µm) can be monitored. Potentiostatic control of the system enables the fluorescence of the surface bound particles to be electrochemically switched via control of the redox state of the dye. Subsequent measurements of the individual particle fluorescence intensities as a function of the applied electrode potential enables construction of an effective, dynamically recorded cyclic voltammogram of an individual particle. The confined volume voltammetry (∼tens of attoliters) yields insight into the asymmetry of the kinetics of the redox switching process, where it is proposed that the reformation of the fluorescent Nile Red becomes chemically "gated" in the organic phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...