Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297174

RESUMO

Charcoal rot, caused by the soilborne hemibiotrophic fungus Macrophomina phaseolina, is a prevalent and economically significant plant disease. It is hypothesized that M. phaseolina induces oxidative stress-mediated senescence in plants. Infection by M. phaseolina results in the host's accumulation of reactive oxygen species (ROS) that contribute toward basal defense. However, the production of ROS could also lead to cellular damage and senescence in host tissue. This study aimed to determine if ascorbic acid, a ROS scavenging molecule, could quench M. phaseolina-induced hydrogen peroxide (H2O2) generation in a soybean-M. phaseolina pathosystem. In vitro sensitivity tests showed that M. phaseolina isolates were sensitive to L-ascorbic acid (LAA) at concentrations of 10.5 to 14.3 mM based on IC50 (half-maximal inhibitory concentration) data. In planta cut-stem assays demonstrated that pre-treatment with 10 mM of either LAA (reduced form) or DHAA (dehydroascorbic acid; oxidized form) significantly decreased lesion length compared to the non-pretreated control and post-treatments with both ascorbic acid forms after M. phaseolina inoculation. Further, H2O2 quantification from ascorbic acid-pretreated tissue followed by M. phaseolina inoculation showed significantly less accumulation of H2O2 than the inoculated control or the mock-inoculated control. This result demonstrated that M. phaseolina not only induced H2O2 after host infection but also increased ROS-mediated senescence. This study shows the potential of ascorbic acid, an effective ROS scavenger, to limit ROS-mediated senescence associated with M. phaseolina infection.

2.
J Appl Microbiol ; 132(5): 3797-3811, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35226387

RESUMO

AIMS: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence. METHODS AND RESULTS: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species. CONCLUSION: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause.


Assuntos
Ascomicetos , Fusarium , Fusarium/genética , Rhizoctonia , Plântula , Glycine max
3.
Springerplus ; 2: 650, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349954

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] grain yield is severely affected by abiotic and biotic stresses during post-flowering stages, which has been aggravated by climate change. New parental lines having genes for various biotic and abiotic stress tolerances have the potential to mitigate this negative effect. Field studies were conducted under irrigated and dryland conditions with 128 exotic germplasm and 12 adapted lines to evaluate and identify potential sources for post-flowering drought tolerance and stalk and charcoal rot tolerances. The various physiological and disease related traits were recorded under irrigated and dryland conditions. Under dryland conditions, chlorophyll content (SPAD), grain yield and HI were decreased by 9, 44 and 16%, respectively, compared to irrigated conditions. Genotype RTx7000 and PI475432 had higher leaf temperature and grain yield, however, genotype PI570895 had lower leaf temperature and higher grain yield under dryland conditions. Increased grain yield and optimum leaf temperature was observed in PI510898, IS1212 and PI533946 compared to BTx642 (B35). However, IS14290, IS12945 and IS1219 had decreased grain yield and optimum leaf temperature under dryland conditions. Under irrigated conditions, stalk and charcoal rot disease severity was higher than under dryland conditions. Genotypes IS30562 and 1790E R had tolerance to both stalk rot and charcoal rot respectively and IS12706 was the most susceptible to both diseases. PI510898 showed combined tolerance to drought and Fusarium stalk rot under dryland conditions. The genotypes identified in this study are potential sources of drought and disease tolerance and will be used to develop better adaptable parental lines followed by high yielding hybrids.

4.
Plant Dis ; 96(12): 1775-1779, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727292

RESUMO

Sorghum is a host to numerous Potyvirus spp. and its germplasm encompasses a wide range of infection responses to these viruses. We determined how 183 mini-core-collection sorghum germplasm accessions responded to mechanical inoculation with Maize dwarf mosaic virus (MDMV) in growth regimes in which they were maintained at 30°C followed by 16°C for 5 days. Accessions that appeared immune to MDMV in this initial screening were evaluated for their response in a similar temperature maintenance regime to mechanical inoculation with MDMV, Sugarcane mosaic virus strain MDB (SCMV-MDB), Sorghum mosaic virus (SrMV), Zea mosaic virus (ZeMV), and Kansas, Nigerian, and Australian isolates of Johnsongrass mosaic virus (JGMV-KS, -N, and -Aus, respectively). In both experiments, MDMV systemically infected all accessions except international sorghum accession number (IS) 7679 and IS 20740. These accessions also proved resistant to MDMV, SCMV-MDB, SrMV, and JGMV-N but both were susceptible to the JGMV-KS and JGMV-Aus isolates. IS 7679 but not IS 20740 was resistant to infection with ZeMV. These observations suggest that IS 7679 and IS 20740 might serve as new sources of resistance to several Potyvirus spp. that systemically infect sorghum.

5.
Microb Ecol ; 57(4): 766-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19125306

RESUMO

Trophic interactions involving predators, herbivores, and plants have been described in terrestrial systems. However, there is almost no information on the effect of trophic interactions on microbial phyllosphere community abundance, diversity, or structure. In this study, the interaction between a parasitoid, an insect herbivore, and the fungal phyllosphere community is examined. Parasitoid wasps have an indirect negative impact on fungal community diversity. On the citrus phyllosphere, the exotic wasp species, Amitus hesperidum and Encarsia opulenta, may parasitize the citrus blackfly (Aleurocanthus woglumi). If parasitism levels are low, the blackfly may produce significant amounts of honeydew secretions on the surface of the leaf. Honeydew deposition provides a carbon-rich substrate for the development of fungal growth persisting as sooty mold on the leaves. Leaves from sooty mold-infested grapefruit (Citrus paradisi) trees were collected from multiple orchards in south Texas. The effect of different levels of exotic parasite activity, citrus blackfly, and sooty mold infestation on phyllosphere mycobiota community structure and diversity was examined. Our results suggest the presence of the parasitoid may lead to a top-down trophic cascade affecting phyllosphere fungal community diversity and structure. Additionally, persistent sooty mold deposits that have classically been referred to as Capnodium citri (and related asexual morphological forms) actually comprise a myriad of fungal species including many saprophytes and potential fruit and foliar pathogens of citrus.


Assuntos
Dípteros/parasitologia , Ecossistema , Cadeia Alimentar , Fungos/crescimento & desenvolvimento , Vespas/fisiologia , Animais , Citrus paradisi/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Folhas de Planta/microbiologia , Dinâmica Populacional , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...