Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 5(33): 6701-6727, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264322

RESUMO

In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing. We analyze the biologically relevant properties of QDs focusing on the following topics: QD surface treatment and stability, labeling of cellular structures and receptors with QDs, incorporation of QDs in living cells, cytotoxicity of QDs and influence of the biological environment on the biological and optical properties of QDs. Initially, we consider utilization of QDs as agents in high-resolution bioimaging techniques that can provide information at the molecular levels. The diverse range of modern live-cell QD-based imaging techniques with resolution far beyond the diffraction limit of light is examined. In each technique, we discuss the pros and cons of QD use and deliberate how QDs can be further engineered to facilitate their application in the respective imaging techniques and to produce significant improvements in resolution. Then we review QD-based point-of-care bioassays, bioprobes, and biosensors designed in different formats ranging from analytic biochemistry assays and ELISA, to novel point-of-care smartphone integrated QD-based biotests. Here, a wide range of QD-based fluorescence bioassays with optical transduction, elecrochemiluminescence and photoelectrochemical assays are discussed. Finally, this review provides an analysis of the prospects of application of QDs in selected important areas of biology.

2.
Rev Sci Instrum ; 84(11): 116104, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289445

RESUMO

We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 µm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 µm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...