Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3110, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561837

RESUMO

The coherent evolution of a molecular quantum state during a molecule-surface collision is a detailed descriptor of the interaction potential which was so far inaccessible to measurements. Here we use a magnetically controlled molecular beam technique to study the collision of rotationally oriented ground state hydrogen molecules with a lithium fluoride surface. The coherent control nature of the technique allows us to measure the changes in the complex amplitudes of the rotational projection quantum states, and express them using a scattering matrix formalism. The quantum state-to-state transition probabilities we extract reveal a strong dependency of the molecule-surface interaction on the rotational orientation of the molecules, and a remarkably high probability of the collision flipping the rotational orientation. The scattering matrix we obtain from the experimental data delivers an ultra-sensitive benchmark for theory to reproduce, guiding the development of accurate theoretical models for the interaction of H2 with a solid surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...