Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 27932-27944, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973852

RESUMO

Recent studies have identified butanone as a promising biomarker in the breath of lung cancer patients, yet the understanding of its gas-sensing properties remains limited. A key challenge has been to enhance the gas-sensing performance of materials toward butanone, particularly under ultraviolet light exposure. Herein, we report the synthesis of a novel three-dimensional composite material composed of SnO2 incorporated with Bi2O3 using facile hydrothermal and impregnation precipitation methods. Detailed physical and chemical characterizations were performed to assess the properties of the developed material. Upon activation with ultraviolet light, our composite exhibited exceptionally high sensitivity to butanone. Remarkably, the butanone response was nearly 3 times greater for the Bi2O3-loaded SnO2 composite than for pristine SnO2, achieving a response value of 70. This substantial improvement is due to the synergistic effect of the material's distinctive three-dimensional architecture and the presence of Bi2O3, which significantly augmented the gas-sensing capability of butanone. To elucidate the underlying gas-sensing mechanism, we conducted first-principles calculations using density functional theory (DFT). The computational analysis revealed that the Bi2O3-containing system possesses superior adsorption energy for butanone. Ultimately, our findings suggest that the Bi-SnO2 composite holds great promise as an optimal sensing material for the detection of butanone under ultraviolet illumination.

2.
Int J Nanomedicine ; 15: 10371-10384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376326

RESUMO

PURPOSE: Many exopolysaccharides (EPS) have significant emulsifying activity. Some EPS produced by the marine bacterial strain FYS have stronger emulsifying activity in the form of nanoparticles, suggesting that they could potentially form Pickering emulsions. We prepared novel EPS/CT Pickering nanoemulsions (ECPN) with EPS as emulsifiers and assessed their ability to ameliorate the poor permeability of calcipotriol (CT) in skin affected by psoriasis vulgaris. METHODS: A strain of marine bacterium FYS was identified. Molecular weight, monosaccharide composition and microstructure of EPS were determined by gel permeation chromatography, high-performance liquid chromatography and scanning electron microscopy. EPS nanoparticles were prepared by adjusting the pH, and the emulsifying activity was studied at different pH. ECPN were prepared by ultrasound and optimized by the response surface method. The size distribution, microstructure, stability and in vitro drug release of ECPN were studied. The therapeutic effect of ECPN on psoriasis vulgaris was explored by animal experiments and characterizing histomorphology in vivo. RESULTS: A phylogenetic tree revealed that FYS was a Bacillus halodurans strain. EPS produced by the strain were heteropolysaccharides with a three-dimensional network composed of glucose, galactose, glucuronic acid, rhamnose, galacturonic acid and mannose (32.0:34.3:9.7:7.4:10.3:6.3). The EPS can form nanoparticles at pH = 4-6 with enhanced emulsifying ability. Transmission electron microscopy revealed that EPS nanoparticles adhered to the surface of oil droplets to stabilize the emulsions via a Pickering emulsification mechanism. The prepared ECPN have high stability with a sustained-release effect. Finally, animal experiments showed that ECPN effectively shortened the treatment course of psoriasis vulgaris. CONCLUSION: EPS is highly possible to have the potential Pickering emulsification mechanism. The stability of the nanoemulsion was high. ECPN also showed potential for use in the treatment of psoriasis vulgaris. This study provides new insight into the medical applications of EPS and the treatment of psoriasis.


Assuntos
Calcitriol/análogos & derivados , Emulsões/química , Polissacarídeos Bacterianos/química , Psoríase/tratamento farmacológico , Animais , Bacillus/química , Bacillus/genética , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Emulsificantes/química , Emulsões/administração & dosagem , Concentração de Íons de Hidrogênio , Camundongos , Peso Molecular , Nanopartículas/química , Filogenia , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...