Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(6): 7998-8014, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820255

RESUMO

The stimulated Raman adiabatic passage shows an efficient technique that accurately transfers population between two discrete quantum states with the same parity in three-level quantum systems based on adiabatic evolution. This technique has widely theoretical and experimental applications in many fields of physics, chemistry, and beyond. Here, we present a general approach to robust stimulated Raman shortcut-to-adiabatic passage with invariant-based optimal control. By controlling the dynamical process, we inversely design a family of Hamiltonians with non-divergent Rabi frequencies that can realize fast and accurate population transfer from the first to the third level, while the systematic errors are largely suppressed in general. Furthermore, a detailed trade-off relation between the population of the intermediate state and the amplitudes of Rabi frequencies in the transfer process is illustrated. These results provide an optimal route toward manipulating the evolution of three-level quantum systems in future quantum information processing.

2.
Phys Rev Lett ; 123(10): 100501, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573289

RESUMO

Nonadiabatic holonomic quantum computation (NHQC) has been developed to shorten the construction times of geometric quantum gates. However, previous NHQC gates require the driving Hamiltonian to satisfy a set of rather restrictive conditions, reducing the robustness of the resulting geometric gates against control errors. Here we show that nonadiabatic geometric gates can be constructed in an extensible way, called NHQC+, for maintaining both flexibility and robustness against certain types of noises. Consequently, this approach makes it possible to incorporate most of the existing optimal control methods, such as dynamical decoupling, composite pulses, and a shortcut to adiabaticity, into the construction of single-looped geometric gates. Furthermore, this extensible approach of geometric quantum computation can be applied to various physical platforms such as superconducting qubits and nitrogen-vacancy centers. Specifically, we performed numerical simulation to show how the noise robustness in recent experimental implementations [Phys. Rev. Lett. 119, 140503 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.140503; Nat. Photonics 11, 309 (2017)NPAHBY1749-488510.1038/nphoton.2017.40] can be significantly improved by our NHQC+.approach. These results cover a large class of new techniques combing the noise robustness of both geometric phase and optimal control theory.

3.
Phys Rev Lett ; 122(8): 080501, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932607

RESUMO

When a quantum system is driven slowly through a parametric cycle in a degenerate Hilbert space, the state would acquire a non-Abelian geometric phase, which is stable and forms the foundation for holonomic quantum computation (HQC). However, in the adiabatic limit, the environmental decoherence becomes a significant source of errors. Recently, various nonadiabatic holonomic quantum computation (NHQC) schemes have been proposed, but all at the price of increased sensitivity to control errors. Alternatively, there exist theoretical proposals for speeding up HQC by the technique of "shortcut to adiabaticity" (STA), but no experimental demonstration has been reported so far, as these proposals involve a complicated control of four energy levels simultaneously. Here, we propose and experimentally demonstrate that HQC via shortcut to adiabaticity can be constructed with only three energy levels, using a superconducting qubit in a scalable architecture. With this scheme, all holonomic single-qubit operations can be realized nonadiabatically through a single cycle of state evolution. As a result, we are able to experimentally benchmark the stability of STA+HQC against NHQC in the same platform. The flexibility and simplicity of our scheme makes it also implementable on other systems, such as nitrogen-vacancy center, quantum dots, and nuclear magnetic resonance. Finally, our scheme can be extended to construct two-qubit holonomic entangling gates, leading to a universal set of STAHQC gates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...