Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Cell Death Dis ; 15(5): 380, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816370

RESUMO

Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.


Assuntos
Caseína Quinase II , Senescência Celular , Dano ao DNA , Longevidade , Proteínas de Membrana , Metaloendopeptidases , Animais , Senescência Celular/efeitos dos fármacos , Caseína Quinase II/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Camundongos , Longevidade/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Dano ao DNA/efeitos dos fármacos , Metaloendopeptidases/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/deficiência , Apoptose/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox/metabolismo , Histonas/metabolismo , Camundongos Knockout , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Fosforilação/efeitos dos fármacos
2.
Cell Rep ; 43(5): 114238, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748875

RESUMO

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Assuntos
Dieta Hiperlipídica , Proteína Semelhante a ELAV 1 , Absorção Intestinal , Triglicerídeos , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Animais , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Camundongos , Dieta Hiperlipídica/efeitos adversos , Humanos , Camundongos Endogâmicos C57BL , Masculino , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Obesidade/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Camundongos Knockout , Regiões 3' não Traduzidas/genética , Aciltransferases
3.
Aging Cell ; : e14188, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686927

RESUMO

Beyond the antimicrobial activity, doxycycline (DOX) exhibits longevity-promoting effect in nematodes, while its effect on mammals is unclear. Here, we applied a mouse model of Hutchinson-Gilford progeria syndrome (HGPS), Zmpste24 knockout (KO) mice, and analyzed the antiaging effect of DOX. We found that the DOX treatment prolongs lifespan and ameliorates progeroid features of Zmpste24 KO mice, including the decline of body and tissue weight, exercise capacity and cortical bone density, and the shortened colon length. DOX treatment alleviates the abnormal nuclear envelope in multiple tissues, and attenuates cellular senescence and cell death of Zmpste24 KO and HGPS fibroblasts. DOX downregulates the level of proinflammatory IL6 in both serum and tissues. Moreover, the elevated α-tubulin (K40) acetylation mediated by NAT10 in progeria, is rescued by DOX treatment in the aorta tissues in Zmpste24 KO mice and fibroblasts. Collectively, our study uncovers that DOX can decelerate aging in progeria mice via counteracting IL6 expression and NAT10-mediated acetylation of α-tubulin.

4.
Adv Mater ; 36(24): e2400920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38437805

RESUMO

High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.

5.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542296

RESUMO

The highly conserved Notch signaling pathway affects embryonic development, neurogenesis, homeostasis, tissue repair, immunity, and numerous other essential processes. Although previous studies have demonstrated the location and function of the core components of Notch signaling in various animal phyla, a more comprehensive summary of the Notch core components in lower organisms is still required. In this review, we objectively summarize the molecular features of the Notch signaling pathway constituents, their current expression profiles, and their functions in invertebrates, with emphasis on their effects on neurogenesis and regeneration. We also analyze the evolution and other facets of Notch signaling and hope that the contents of this review will be useful to interested researchers.


Assuntos
Invertebrados , Receptores Notch , Animais , Receptores Notch/genética , Receptores Notch/metabolismo , Invertebrados/metabolismo , Transdução de Sinais
6.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474521

RESUMO

Graphene and its derivatives have been confirmed to be among the best fillers for rubber due to their excellent properties, such as high mechanical strength, improved interface interaction, and strain-induced crystallization capabilities. Graphene rubber materials can be widely used in tires, shoes, high-barrier conductive seals, electromagnetic shielding seals, shock absorbers, etc. In order to reduce the graphene loading and endow more desirable functions to rubber materials, graphene-based hybrid fillers are extensively employed, which can effectively enhance the performance of rubber composites. This review briefly summarizes the recent research on rubber composites with graphene-based hybrid fillers consisting of carbon black, silica, carbon nanotubes, metal oxide, and one-dimensional nanowires. The preparation methods, performance improvements, and applications of different graphene-based hybrid fillers/rubber composites have been investigated. This study also focuses on methods that can ensure the effectiveness of graphene hybrid fillers in reinforcing rubber composites. Furthermore, the enhanced mechanism of graphene- and graphene derivative-based hybrid fillers in rubber composites is investigated to provide a foundation for future studies.

7.
Nanomicro Lett ; 16(1): 117, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358566

RESUMO

Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost, high-safety, and high theoretical capacity. However, dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization. These problems can be tackled through the optimization of the electrolyte. However, the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive. Herein, a fast and simple method based on the digital holography is developed. It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer. It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth, thus able to value the applicability of electrolyte additives. The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive. Based on systematic characterization, it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition, but also construct adsorption molecule layers to inhibit side reactions of Zn anode. Being easy to operate, capable of in situ observation, and able to endure harsh conditions, digital holography method will be a promising approach for the interfacial investigation of other battery systems.

8.
Cardiovasc Res ; 120(4): 403-416, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198357

RESUMO

AIMS: Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by a high mortality rate. Pulmonary arterial endothelium cells (PAECs) serve as a primary sensor of various environmental cues, such as shear stress and hypoxia, but PAEC dysfunction may trigger vascular remodelling during the onset of PH. This study aimed to illustrate the role of Sirtuin 7 (SIRT7) in endothelial dysfunction during PH and explore the potential therapeutic strategy for PH. METHODS AND RESULTS: SIRT7 levels were measured in human and murine experimental PH samples. Bioinformatic analysis, immunoprecipitation, and deacetylation assay were used to identify the association between SIRT7 and Krüpple-like factor 4 (KLF4), a key transcription factor essential for endothelial cell (EC) homeostasis. Sugen5416 + hypoxia (SuHx)-induced PH mouse models and cell cultures were used for the study of the therapeutic effect of SIRT7 for PH. SIRT7 level was significantly reduced in lung tissues and PAECs from PH patients and the SuHx-induced PH mouse model as compared with healthy controls. Pulmonary endothelium-specific depletion of Sirt7 increased right ventricular systolic pressure and exacerbated right ventricular hypertrophy in the SuHx-induced PH model. At the molecular level, we identified KLF4 as a downstream target of SIRT7, which deacetylated KLF4 at K228 and inhibited the ubiquitination-proteasome degradation. Thus, the SIRT7/KLF4 axis maintained PAEC homeostasis by regulating proliferation, migration, and tube formation. PAEC dysfunction was reversed by adeno-associated virus type 1 vector-mediated endothelial overexpression of Sirt7 or supplementation with nicotinamide adenine dinucleotide (NAD)+ intermediate nicotinamide riboside which activated Sirt7; both approaches successfully reversed PH phenotypes. CONCLUSION: The SIRT7/KLF4 axis ensures PAEC homeostasis, and pulmonary endothelium-specific SIRT7 targeting might constitute a PH therapeutic strategy.


Assuntos
Hipertensão Pulmonar , Sirtuínas , Animais , Humanos , Camundongos , Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Artéria Pulmonar , Sirtuínas/genética , Sirtuínas/metabolismo
9.
Int J Biol Macromol ; 261(Pt 1): 129772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281539

RESUMO

The synergistic effect of graphene sheets and titanium dioxide nanoparticles (TiO2) hybrid fillers can improve the antibacterial, mechanical, and barrier properties of gelatin (GL), making it more suitable to be used in the food packaging application. However, the uneven dispersion and aggregation of the hybrid fillers restrict its performance for further application. In order to achieve the above superior properties, reduced graphene oxide aerogel microspheres (rGOAMs) loaded with TiO2 (rGOAMs@TiO2) were successfully prepared using one-step hydrothermal process by reducing titanium sulfate into TiO2 on the framework of rGOAMs, followed by effective dispersion in the GL matrix to form nanocomposites (rGOAMs@TiO2/GL) through simultaneous ultrasonication and mechanical stirring, as well as an ultrasonic cell grinder process. Incorporating a mere 0.8 wt% of rGOAMs@TiO2 effectively improved the mechanical, antibacterial, UV light barrier, thermal stability, hydrophobicity, and water vapor barrier properties of the GL. Compared with the composites made of rGOAMs, TiO2, and GL (rGOAMs/TiO2/GL), rGOAMs@TiO2/GL composites showed stronger filler-matrix interactions, better filler dispersion, and lower TiO2 particle aggregation, suggesting superiority compared to rGOAMs/TiO2/GL composites at the same filler content. This innovative method of mixing GL with rGOAMs@TiO2 holds great promise for enhancing the suitability of GL in active food packaging applications.


Assuntos
Embalagem de Alimentos , Grafite , Gelatina , Microesferas , Titânio , Antibacterianos/farmacologia
10.
Bioorg Chem ; 143: 107050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163423

RESUMO

Immunomodulatory drugs (e.g. thalidomide, lenalidomide and pomalidomide) have been proven highly successful in clinical treatment of multiple myeloma. However, systematic degradation of zinc finger transcriptional factors induced by these drugs could lead to severe systematic toxicity in patients. Previous reports of NVOC caged pomalidomide attempted to regulate its activity using UVA irradiation, but their application was limited by high cytotoxicity and low tissue penetration. Here, we reported red-shifted BODIPY caged lenalidomide and pomalidomide that enabled red-light controlled protein degradation with spatiotemporal precision.


Assuntos
Mieloma Múltiplo , Talidomida , Humanos , Talidomida/farmacologia , Talidomida/uso terapêutico , Lenalidomida/farmacologia , Proteólise , Mieloma Múltiplo/tratamento farmacológico
11.
Appl Biochem Biotechnol ; 196(1): 573-587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37160564

RESUMO

Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer cell proliferation and angiogenesis. In the present study, we designed, expressed, and purified a fibroblast growth factor receptor fragment (FGFR1-Fc) fusion protein using NS/0 cells. In FGF2-FGFR1 overexpressed NCI-H1703 cells, the FGFR1-Fc fusion protein effectively inhibited proliferation and invasion and arrested the cell cycle at the G0-G1 phase. In NCI-H1703 cells treated with the FGFR1-Fc fusion protein, the phosphorylation levels of FGFR1, FRS2, ERK, and AKT were significantly reduced. Using an siRNA assay, we demonstrated that FGF2-FGFR1 is the major anti-tumor target of FGFR1-Fc fusion the FGFR1-Fc fusion protein, which also significantly inhibited proliferation and invasion by NCI-H1703 cells via the FGF2-FGFR1 signaling pathway. In addition, the FGFR1-Fc fusion protein significantly inhibited angiogenesis in an embryonic chorioallantoic membrane model. The FGFR1-Fc fusion protein may be an effective therapeutic candidate for LSCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Imunoglobulina G , Neoplasias Pulmonares , Proteínas Recombinantes de Fusão , Humanos , Fator 2 de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proliferação de Células , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/metabolismo , Linhagem Celular Tumoral
13.
Nat Chem Biol ; 20(4): 484-492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37945893

RESUMO

GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.


Assuntos
Receptores Acoplados a Proteínas G , Camundongos , Animais , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Ligantes
14.
Acta Pharmacol Sin ; 45(2): 405-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814123

RESUMO

Gastric cancer stem cells (GCSCs) contribute to the refractory features of gastric cancer (GC) and are responsible for metastasis, relapse, and drug resistance. The key factors drive GCSC function and affect the clinical outcome of GC patients remain poorly understood. PRSS23 is a novel serine protease that is significantly up-regulated in several types of cancers and cancer stem cells, and related to tumor progression and drug resistance. In this study, we investigated the role of PRSS23 in GCSCs as well as the mechanism by which PRSS23 regulated the GCSC functions. We demonstrated that PRSS23 was critical for sustaining GCSC survival. By screening a collection of human immunodeficiency virus (HIV) protease inhibitors (PIs), we identified tipranavir as a PRSS23-targeting drug, which effectively killed both GCSC and GC cell lines (its IC50 values were 4.7 and 6.4 µM in GCSC1 cells and GCSC2 cells, respectively). Administration of tipranavir (25 mg·kg-1·d-1, i.p., for 8 days) in GCSC-derived xenograft mice markedly inhibited the growth of subcutaneous GCSC tumors without apparent toxicity. In contrast, combined treatment with 5-FU plus cisplatin did not affect the tumor growth but causing significant weight loss. Furthermore, we revealed that tipranavir induced GCSC cell apoptosis by suppressing PRSS23 expression, releasing MKK3 from the PRSS23/MKK3 complex to activate p38 MAPK, and thereby activating the IL24-mediated Bax/Bak mitochondrial apoptotic pathway. In addition, tipranavir was found to kill other types of cancer cell lines and drug-resistant cell lines. Collectively, this study demonstrates that by targeting both GCSCs and GC cells, tipranavir is a promising anti-cancer drug, and the clinical development of tipranavir or other drugs specifically targeting the PRSS23/MKK3/p38MAPK-IL24 mitochondrial apoptotic pathway may offer an effective approach to combat gastric and other cancers.


Assuntos
Piridinas , Pironas , Neoplasias Gástricas , Sulfonamidas , Humanos , Animais , Camundongos , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas , Apoptose , Serina Endopeptidases/metabolismo
15.
Nat Commun ; 14(1): 8467, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123558

RESUMO

Sensory cortices modulate innate behaviors through corticofugal projections targeting phylogenetically-old brainstem nuclei. However, the principles behind the functional connectivity of these projections remain poorly understood. Here, we show that in mice visual cortical neurons projecting to the optic-tract and dorsal-terminal nuclei (NOT-DTN) possess distinct response properties and anatomical connectivity, supporting the adaption of an essential innate eye movement, the optokinetic reflex (OKR). We find that these corticofugal neurons are enriched in specific visual areas, and they prefer temporo-nasal visual motion, matching the direction bias of downstream NOT-DTN neurons. Remarkably, continuous OKR stimulation selectively enhances the activity of these temporo-nasally biased cortical neurons, which can efficiently promote OKR plasticity. Lastly, we demonstrate that silencing downstream NOT-DTN neurons, which project specifically to the inferior olive-a key structure in oculomotor plasticity, impairs the cortical modulation of OKR and OKR plasticity. Our results unveil a direction-selective cortico-brainstem pathway that adaptively modulates innate behaviors.


Assuntos
Instinto , Vias Visuais , Animais , Camundongos , Vias Visuais/fisiologia , Movimentos Oculares , Reflexo/fisiologia , Tronco Encefálico
16.
Sheng Li Xue Bao ; 75(6): 836-846, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151347

RESUMO

Aging is an independent risk factor for chronic diseases in the elderly, and understanding aging mechanisms is one of the keys to achieve early prevention and effective intervention for the diseases. Aging process is dynamic and systemic, making it difficult for mechanistic study. With recent advances in aging biomarkers and development of live-imaging technologies, more and more reporter mouse models have been generated, which can live monitor the aging process, and help investigate aging mechanisms at systemic level and develop intervention strategies. This review summarizes recent advances in live-imaging aging reporter mouse models based on widely used aging biomarkers (p16Ink4a, p21Waf1/Cip1, p53 and Glb1), and discusses their applications in aging research.


Assuntos
Envelhecimento , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Animais , Camundongos , Idoso , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Biomarcadores , Proteína Supressora de Tumor p53
17.
Proc Natl Acad Sci U S A ; 120(47): e2309200120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967221

RESUMO

Patients with Hutchinson-Gilford progeria syndrome (HGPS) present with a number of premature aging phenotypes, including DNA damage accumulation, and many of them die of cardiovascular complications. Although vascular pathologies have been reported, whether HGPS patients exhibit cardiac dysfunction and its underlying mechanism is unclear, rendering limited options for treating HGPS-related cardiomyopathy. In this study, we reported a cardiac atrophy phenotype in the LmnaG609G/G609G mice (hereafter, HGPS mice). Using a GFP-based reporter system, we demonstrated that the efficiency of nonhomologous end joining (NHEJ) declined by 50% in HGPS cardiomyocytes in vivo, due to the attenuated interaction between γH2AX and Progerin, the causative factor of HGPS. As a result, genomic instability in cardiomyocytes led to an increase of CHK2 protein level, promoting the LKB1-AMPKα interaction and AMPKα phosphorylation, which further led to the activation of FOXO3A-mediated transcription of atrophy-related genes. Moreover, inhibiting AMPK enlarged cardiomyocyte sizes both in vitro and in vivo. Most importantly, our proof-of-concept study indicated that isoproterenol treatment significantly reduced AMPKα and FOXO3A phosphorylation in the heart, attenuated the atrophy phenotype, and extended the mean lifespan of HGPS mice by ~21%, implying that targeting cardiac atrophy may be an approach to HGPS treatment.


Assuntos
Senilidade Prematura , Progéria , Humanos , Camundongos , Animais , Progéria/metabolismo , Coração , Dano ao DNA , Instabilidade Genômica , Proteínas Quinases Ativadas por AMP/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
18.
Nat Aging ; 3(11): 1401-1414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946040

RESUMO

The stem cell theory of aging dictates that a decline in the number and/or function of stem cells causes tissue degeneration and aging; however, it still lacks unequivocal experimental support. Here, using lineage tracing and single-cell transcriptomics, we identify a population of CD133+ bone marrow-derived endothelial-like cells (ELCs) as potential endothelial progenitor cells, which contribute to tubular structures in vitro and neovascularization in vivo. We demonstrate that supplementation with wild-type and young ELCs respectively restores neovascularization and extends lifespan in progeric and naturally aged mice. Mechanistically, we identify an upregulation of farnesyl diphosphate synthase (FDPS) in aged CD133+ ELCs-a key enzyme in isoprenoid biosynthesis. Overexpression of FDPS compromises the neovascularization capacity of CD133+ ELCs, whereas FDPS inhibition by pamidronate enhances neovascularization, improves health measures and extends lifespan in aged mice. These findings highlight stem cell-based strategies for the treatment of progeria and age-related pathologies.


Assuntos
Células Progenitoras Endoteliais , Camundongos , Animais , Células Progenitoras Endoteliais/patologia , Longevidade , Neovascularização Patológica/patologia , Células-Tronco/patologia
19.
BMC Med Inform Decis Mak ; 23(1): 215, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833724

RESUMO

OBJECTIVE: To evaluate RSF and Cox models for mortality prediction of hemorrhagic stroke (HS) patients in intensive care unit (ICU). METHODS: In the training set, the optimal models were selected using five-fold cross-validation and grid search method. In the test set, the bootstrap method was used to validate. The area under the curve(AUC) was used for discrimination, Brier Score (BS) was used for calibration, positive predictive value(PPV), negative predictive value(NPV), and F1 score were combined to compare. RESULTS: A total of 2,990 HS patients were included. For predicting the 7-day mortality, the mean AUCs for RSF and Cox regression were 0.875 and 0.761, while the mean BS were 0.083 and 0.108. For predicting the 28-day mortality, the mean AUCs for RSF and Cox regression were 0.794 and 0.649, while the mean BS were 0.129 and 0.174. The mean AUCs of RSF and Cox versus conventional scores for predicting patients' 7-day mortality were 0.875 (RSF), 0.761 (COX), 0.736 (SAPS II), 0.723 (OASIS), 0.632 (SIRS), and 0.596 (SOFA), respectively. CONCLUSIONS: RSF provided a better clinical reference than Cox. Creatine, temperature, anion gap and sodium were important variables in both models.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Humanos , Unidades de Terapia Intensiva , Valor Preditivo dos Testes , Curva ROC
20.
Int Immunopharmacol ; 124(Pt A): 110877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657242

RESUMO

Diabetic kidney disease (DKD) is a common diabetic vascular complication affecting nearly 40% of patients with diabetes. The lack of efficacious therapy for DKD necessitates the in-depth investigation of the molecular mechanisms underlying the pathogenesis and progression of DKD, which remain incompletely understood. Here, we discovered that the expression of USP25, a deubiquitinating enzyme, was significantly upregulated in the kidney of diabetic mice. Ablation of USP25 had no influence on glycemic control in type 1 diabetes but significantly aggravated diabetes-induced renal dysfunction and fibrosis by exacerbating inflammation in the kidney. In DKD, USP25 was mainly expressed in glomerular mesangial cells and kidney-infiltrating macrophages. Upon stimulation with advanced glycation end-products (AGEs), USP25 markedly inhibited the production of proinflammatory cytokines in these two cell populations by downregulating AGEs-induced activation of NF-κB and MAPK pathways. Mechanistically, USP25 interacted with TRAF6 and inhibited its K63 polyubiquitination induced by AGEs. Collectively, these findings identify USP25 as a novel regulator of DKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...