Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadl4842, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552028

RESUMO

The high-capacity advantage of lithium metal anode was compromised by common use of copper as the collector. Furthermore, lithium pulverization associated with "dead" Li accumulation and electrode cracking deteriorates the long-term cyclability of lithium metal batteries, especially under realistic test conditions. Here, we report an ultralight, integrated anode of polyimide-Ag/Li with dual anti-pulverization functionality. The silver layer was initially chemically bonded to the polyimide surface and then spontaneously diffused in Li solid solution and self-evolved into a fully lithiophilic Li-Ag phase, mitigating dendrites growth or dead Li. Further, the strong van der Waals interaction between the bottommost Li-Ag and polyimide affords electrode structural integrity and electrical continuity, thus circumventing electrode pulverization. Compared to the cutting-edge anode-free cells, the batteries pairing LiNi0.8Mn0.1Co0.1O2 with polyimide-Ag/Li afford a nearly 10% increase in specific energy, with safer characteristics and better cycling stability under realistic conditions of 1× excess Li and high areal-loading cathode (4 milliampere hour per square centimeter).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...