Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566203

RESUMO

Patulin (PAT) is a mycotoxin, with several acute, chronic, and cellular level toxic effects, produced by various fungi. A limit for PAT in food of has been set by authorities to guarantee food safety. Research on PAT in tea has been very limited although tea is the second largest beverage in the world. In this paper, HPLC-DAD and GC-MS methods for analysis of PAT in different tea products, such as non-fermented (green tea), partially fermented (oolong tea, white tea, yellow tea), completely fermented (black tea), and post-fermented (dark tea and Pu-erh tea) teas were developed. The methods showed good selectivity with regard to tea pigments and 5-hydroxymethylfurfural (5-HMF) and a recovery of 90-102% for PAT at a 10-100 ppb spiking level. Limit of detection (LOD) and limit of quantification (LOQ) in tea were 1.5 ng/g and 5.0 ng/g for HPLC-UV, and 0.25 ng/g and 0.83 ng/g for GC-MS. HPLC was simpler and more robust, while GC-MS showed higher sensitivity and selectivity. GC-MS was used to validate the HPLC-UV method and prove its accuracy. The PAT content of 219 Chinese tea samples was investigated. Most tea samples contained less than 10 ng/g, ten more than 10 ng/g and two more than 50 ng/g. The results imply that tea products in China are safe with regard to their PAT content. Even an extreme daily consumption of 25 g of the tea with the highest PAT content (124 ng/g), translates to an intake of only 3 µg/person/day, which is still an order of magnitude below the maximum allowed daily intake of 30 µg for an adult.


Assuntos
Camellia sinensis , Patulina , Adulto , Bebidas/análise , Camellia sinensis/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Patulina/análise , Chá/química
2.
Nutrients ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35276976

RESUMO

Background. Minerals play important biological roles in lipid metabolism. The primary aim of this study was to examine the relationships between erythrocyte fatty acids (FAs) levels with whole blood mineral elements concentrations among Chinese children. Methods. A cross-sectional study was conducted. A total of 435 children aged 4−7 years were recruited. Whole blood mineral elements were determined by atomic absorption spectrometry and erythrocyte FAs composition by gas chromatography-mass spectrometer. Results. There were direct correlations between Zn and C18:2n-6 (FDR corrected p = 0.019), total n-6 PUFAs (FDR corrected p = 0.034), and total PUFAs (FDR corrected p = 0.034). Direct correlations were found between whole blood Zn and C18:1n-9 (FDR corrected p = 0.035), C24:1n-9 (FDR corrected p = 0.023), total MUFAs (FDR corrected p = 0.023), and C18:2n-6 (FDR corrected p = 0.048) in the Cu < P50 group. In the Cu ≥ P50 group, Mg was inversely related to most FAs (All FDR corrected p < 0.05). In the Zn < P50 group, Cu was directly related to C24:1n-9, total MUFAs, C20:5n-3, C22:6n-3, total n-3 PUFAs, C20:4n-6, total n-6 PUFAs, total PUFAs, and total FAs (All FDR corrected p < 0.05). Conclusions. Whole blood Cu and Zn levels were directly linked to several FAs levels in the erythrocytes of children. The interactions of Mg, Cu, and Zn with fatty acids may affect FA metabolism, in which Mg influences FA absorption.


Assuntos
Ácidos Graxos , Minerais , Criança , Pré-Escolar , Estudos Transversais , Eritrócitos/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos
3.
Mikrochim Acta ; 187(2): 149, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31989275

RESUMO

Two-dimensional porous graphitic carbon nitride (g-C3N4) nanosheets were synthesized by low-cost and direct thermal oxidation. Porous g-C3N4 assembled with graphene oxide (GO) was immobilized on a glassy carbon electrode. The sensor was applied to simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) with high performance. Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical and electrocatalytic properties. The results indicate that the electrochemical sensor possesses high specific surface area, hierarchical pore structure and excellent signal response to AA, DA and UA. The oxidation potentials are well separated at around 0.15, 0.34 and 0.46 V for AA, DA and UA respectively. The determination limits for AA, DA and UA are 3.7 µM, 0.07 µM and 0.43 µM, respectively. The sensor was applied to tracking the three analytes in spiked serum samples with recovery 95.1~105.5% and relation standard deviations of less than 5%. Graphical abstract Schematic representation of porous graphitic carbon nitride nanosheet embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid.


Assuntos
Ácido Ascórbico/sangue , Dopamina/sangue , Grafite/química , Nanoestruturas/química , Compostos de Nitrogênio/química , Ácido Úrico/sangue , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...