Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37624822

RESUMO

The utilization of biogas slurry is critical for the sustainable development of animal husbandry. Biomass carbon adsorption is a feasible method for the recycling of nutrients from biogas slurry. However, research on the co-adsorption of ammonia nitrogen and phosphate is scarce. Herein, soybean straw was utilized as the raw material to prepare Ca2+-modified biochar (CaSSB), which was investigated for its ammonia nitrogen and phosphate adsorption mechanisms. Compared with natural biochar (SSB), CaSSB possesses a high H/C ratio, larger surface area, high porosity and various functional groups. Ca2+-modified soybean straw biochar exhibited excellent adsorption performance for NH4+-N (103.18 mg/g) and PO43--P (9.75 mg/g) at pH = 6, using an adsorbent dosage of 2 g/L. The experimental adsorption data of ammonia nitrogen by CaSSB corresponded to pseudo-second-order kinetics and the Langmuir isotherm model, suggesting that the adsorption process was homogeneous and that electrostatic attraction might be the primary adsorption mechanism. Meanwhile, the adsorption of phosphate conformed to pseudo-second-order kinetics and the Langmuir-Freundlich model, whose mechanism might be attributed to ligand exchange and chemical precipitation. These results reveal the potential of CaSSBs as a cost-effective, efficient adsorbent for the recovery of ammonium and phosphate from biogas slurry.


Assuntos
Amônia , Glycine max , Animais , Fosfatos , Biocombustíveis , Cálcio , Adsorção , Nitrogênio
2.
Environ Sci Pollut Res Int ; 30(31): 76867-76880, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37247150

RESUMO

Bacillus cellulasensis Zn-B isolated from vegetable soil was highly adaptable to Zinc (Zn) and Cadmium (Cd). Cd, but not Zn, adversely affected the total protein spectrum and functional groups of Bacillus cellulasensis Zn-B. Up to 31 metabolic pathways and 216 metabolites of Bacillus cellulasensis Zn-B were significantly changed by Zn and Cd (Zn&Cd). Some metabolic pathways and metabolites related to functional groups of sulfhydryl (-SH) and amine (-NH-) metabolism were enhanced by Zn&Cd addition. The cellulase activity of Bacillus cellulasensis Zn-B was up to 8.58 U mL-1, increased to 10.77 U mL-1 in Bacillus cellulasensis Zn-B + 300 mg L-1 Zn, and maintained at 6.13 U mL-1 in Bacillus cellulasensis Zn-B + 50 mg L-1 Cd. The vegetables' cellulose content was decreased by 25.05-52.37% and 40.28-70.70% under the action of Bacillus cellulasensis Zn-B and Bacillus cellulasensis Zn-B + 300 mg L-1 Zn. Those results demonstrated that Zn could significantly enhance cellulase activity and biodegradability of Bacillus cellulasensis Zn-B to vegetable cellulose. Bacillus cellulasensis Zn-B can survive in vegetable soil accumulated with Zn&Cd. The tolerance concentration and adsorption capacity of Bacillus cellulasensis Zn-B to Zn were up to 300 mg L-1 and 56.85%, indicating that Bacillus cellulasensis Zn-B acting as a thermostability biological agent had an essential advantage in accelerating the degradation of discarded vegetables by Zn and were beneficial to maintain organic matter content of vegetable soil.


Assuntos
Celulases , Poluentes do Solo , Cádmio/análise , Zinco/análise , Verduras , Solo , Poluentes do Solo/análise
3.
Sci Total Environ ; 866: 161381, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621509

RESUMO

Pyrolytic biochar (PL-BC, pyrochar) and hydrothermal biochar (HT-BC, hydrochar) derived from branches and leaves of tea plants had different pH, electrical conductivity (EC), total carbon nitrogen content, BET surface area, total pore volume, average pore diameter, and functional groups. HT-BC had a larger specific surface area and more functional groups than PL-BC. Ralstonia Bcul-1 (R-B) was the dominant and functional bacteria in a fertilized vegetable soil supplemented with TBB-immobilized R-B (TBB + R-B). R-B vitality was more closely related to BET surface area, total pore volume, and functional groups of tea-based biochar (TBB: PL-BC and HT-BC). R-B was able to maintain high oxidase activity. R-B and TBB + R-B can increase the activities of urease and peroxidase in vegetable soil playing an essential role in the biotransformation of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N). TBB was able to simultaneously increase the content of NO3--N and NH4+-N, and TBB + R-B also significantly increased NO3--N content but decreased NH4+-N content in a fertilized vegetable soil. These results indicated that R-B promoted nitrification in the soil, i.e. conversion of NH4+-N into NO3--N, by enhancing the activities of urease and peroxidase. R-B had high adsorption capacity for cadmium (Cd) and chromium (Cr) (Cd&Cr: Cd and Cr). Moreover, TBB + R-B was able to convert weak acid extractable and reducible Cd&Cr into a more stable residual fraction and oxidizable Cd&Cr. The overall effect of the treatments was to reduce plant uptake of Cd&Cr by cabbage. TBB + R-B significantly promoted R-B growth, changed inorganic nitrogen speciation, increased NO3--N supply, reduced Cd&Cr bioavailability, and decreased plant tissue Cd&Cr content.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Nitratos , Cromo/análise , Verduras/metabolismo , Disponibilidade Biológica , Nitrogênio/metabolismo , Urease , Carvão Vegetal/química , Peroxidases/metabolismo , Chá , Poluentes do Solo/análise
4.
J Hazard Mater ; 416: 125942, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492869

RESUMO

A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Metais Pesados/toxicidade , Ralstonia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Environ Pollut ; 264: 114785, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32559880

RESUMO

Biochar produced from water hyacinths (Eichhornia crassipes) has been demonstrated to be an effective adsorbent for the removal of certain heavy metals and as a means of control for this highly invasive species. This study involved examined the Cd2+ sorption dynamics of an alginate encapsulated water hyacinth biochar (BAC) generated at different temperatures and modified using ferric/ferrous sulfate (MBAC). The maximum Cd2+ sorption occurred at a pH of 6 and at a solution temperature of 37 °C. Sorption equilibria for the biochar-alginate capsule (BAC) and modified biochar-alginate capsule (MBAC) treatments fit both the Langmuir (R2 = 0.876 to 0.99) and Freundlich (R2 = 0.849 to 0.971) equations. Langmuir isotherms had a better fit than the Freundlich isotherms, with maximum sorption capacities ranging from 24.2 to 45.8 mg Cd2+ g-1. Larger KL values in Freundlich modeling suggest strong bonding of the BAC and MBAC sorbents to Cd2+, with values of KL in the MBAC treatments ranging between 31 and 178% greater than the BAC treatments. Cd2+ sorption followed pseudo first-order kinetics (R2 = 0.926 to 0.991) with greater efficiency of removal using treatments with biochar generated at temperatures >500 °C. Results from this study highlight the potential for biochar-alginate capsules derived from water hyacinth to be effective for the removal of Cd2+ from wastewaters.


Assuntos
Eichhornia , Poluentes Químicos da Água/análise , Adsorção , Alginatos , Cádmio/análise , Carvão Vegetal , Cinética , Soluções
6.
Sci Rep ; 9(1): 17277, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754121

RESUMO

Biochar amendment is a good means of mitigating methane (CH4) and nitrous oxide (N2O) emissions. However, the effects of biochar amendment on N2O and CH4 reduction in soil under rotation with different soil moisture contents is not well understood. To understand CH4 and N2O flux from soil with biochar amendment under water-unsaturated and water-saturated conditions, a field experiment was conducted in a tobacco-rice rotation field in subtropical China to investigate N2O and CH4 emissions following soil amendment with tobacco straw biochar at rates of 0, 10, 40 and 80 t·ha-1 (B0, B10, B40 and B80, respectively). N2O and CH4 emissions were monitored by a closed-chamber method in the water-unsaturated tobacco (UT) and water-saturated rice (SR) seasons during the 2015 planting season. The soil pH increased from 5.4 in the control to 6.1 in the soil amended with biochar at 80 t·ha-1 in the UT season. During both the UT and SR seasons, with biochar amendment at 40 and 80 t·ha-1, the soil bulk density (BD) decreased, while the soil organic matter (SOM) and available potassium (Av. K) contents increased. N2O flux was significantly greater in UT than in SR in the controls but decreased with the application of biochar during both the UT and SR seasons. The cumulative CH4 emission decreased with the rate of biochar application and the methanotroph pmoA gene copy number in soils and increased with the methanogenic archaea 16Sr DNA gene copy number in soils during the rice-cropping season. These results indicated that biochar amendment could decrease methanogenic archaea and increase of methanotroph pmoA gene, which are the mechanistic origin for CH4 reduction.

7.
J Environ Qual ; 44(5): 1605-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436277

RESUMO

The use of sediment color as a fingerprint property to determine sediment sources is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. The present study aims to test the feasibility of color fingerprint properties to apportion sediment sources within the South Tobacco Creek Watershed (74 km) in Manitoba, Canada. Suspended sediment from 2009 to 2011 at six monitoring stations and potential source samples along the main stem of the creek were collected. Reflectance spectra of sediments and source materials were quantified using a diffuse reflectance spectrometry, and 16 color coefficients were derived from several color space models. Canonical discriminant analysis was used to reclassify and downsize sediment source groups. After the linear additive test and stepwise discriminant function analysis, four color coefficients were chosen to fit the Stable Isotope Analysis in R model. Consistent with the conventional fingerprinting approach, the color fingerprint results demonstrated a switch in the dominant sediment source between the headwaters and the outlet of the watershed, with the main sources being topsoil in the upper reaches, whereas outcrop shale and stream bank materials dominated in the lower reaches. The color fingerprinting approach can be integrated with conventional fingerprints (e.g., geochemical and fallout radionuclide properties) to improve source discrimination, which is a key component for source ascription modeling. We concluded that the use of color fingerprints is a promising, cost-effective technique for sediment source fingerprinting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...