Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1123, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348510

RESUMO

Pochonia chlamydosporia infects eggs and females of economically important plant-parasitic nematodes. The fungal isolates parasitizing different nematodes are genetically distinct. To understand their intraspecific genetic differentiation, parasitic mechanisms, and adaptive evolution, we assembled seven putative chromosomes of P. chlamydosporia strain 170 isolated from root-knot nematode eggs (~44 Mb, including 7.19% of transposable elements) and compared them with the genome of the strain 123 (~41 Mb) isolated from cereal cyst nematode. We focus on secretomes of the fungus, which play important roles in pathogenicity and fungus-host/environment interactions, and identified 1,750 secreted proteins, with a high proportion of carboxypeptidases, subtilisins, and chitinases. We analyzed the phylogenies of these genes and predicted new pathogenic molecules. By comparative transcriptome analysis, we found that secreted proteins involved in responses to nutrient stress are mainly comprised of proteases and glycoside hydrolases. Moreover, 32 secreted proteins undergoing positive selection and 71 duplicated gene pairs encoding secreted proteins are identified. Two duplicated pairs encoding secreted glycosyl hydrolases (GH30), which may be related to fungal endophytic process and lost in many insect-pathogenic fungi but exist in nematophagous fungi, are putatively acquired from bacteria by horizontal gene transfer. The results help understanding genetic origins and evolution of parasitism-related genes.


Assuntos
Hypocreales/genética , Hypocreales/metabolismo , Metaboloma , Proteoma , Transcriptoma , Cromossomos Fúngicos , Biologia Computacional/métodos , Duplicação Gênica , Transferência Genética Horizontal , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Filogenia , Plantas/microbiologia , Plantas/parasitologia , Seleção Genética
2.
Front Microbiol ; 9: 3237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671042

RESUMO

A reliable source of Huperzine A (HupA) meets an urgent need due to its wide use in Alzheimer's disease treatment. In this study, we sequenced and characterized the whole genomes of two HupA-producing endophytes, Penicillium polonicum hy4 and Colletotrichum gloeosporioides Cg01, to clarify the mechanism of HupA biosynthesis. The whole genomes of hy4 and Cg01 were 33.92 and 55.77 Mb, respectively. We compared the differentially expressed genes (DEGs) between the induced group (with added extracts of Huperzia serrata) and a control group. We focused on DEGs with similar expression patterns in hy4 and Cg01. The DEGs identified in GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were primarily located in carbon and nitrogen metabolism and nucleolus, ribosome, and rRNA processing. Furthermore, we analyzed the gene expression for HupA biosynthesis genes proposed in plants, which include lysine decarboxylase (LDC), copper amine oxidase (CAO), polyketides synthases (PKS), etc. Two LDCs, one CAO, and three PKSs in Cg01 were selected as prime candidates for further validation. We found that single candidate biosynthesis-gene knock-out did not influence the HupA production, while both LDC gene knock-out led to increased HupA production. These results reveal that HupA biosynthesis in endophytes might differ from that proposed in plants, and imply that the HupA-biosynthesis genes in endophytic fungi might co-evolve with the plant machinery rather than being acquired through horizontal gene transfer (HGT). Moreover, we analyzed the function of the differentially expressed epigenetic modification genes. HupA production of the histone acetyltransferase (HAT) deletion mutant ΔCgSAS-2 was not changed, while that of the histone methyltransferase (HMT) and histone deacetylase (HDAC) deletion mutants ΔCgClr4, ΔCgClr3, and ΔCgSir2-6 was reduced. Recovery of HupA-biosynthetic ability can be achieved by retro-complementation, demonstrating that HMT and HDACs associated with histone modification are involved in the regulation of HupA biosynthesis in endophytic fungi. This is the first report on epigenetic modification in high value secondary metabolite- producing endophytes. These findings shed new light on HupA biosynthesis and regulation in HupA-producing endophytes and are crucial for industrial production of HupA from fungi.

3.
Mitochondrial DNA B Resour ; 2(2): 814-815, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473993

RESUMO

Fusarium spp. are significantly important plant pathogens, and some of them are ethanol-producing strains. During infection and/or ethanol production, Fusarium requires a plenty of energy that is mainly provided by mitochondria. Here we report the first mitogenome from a selected Fusarium oxysporum strain mh2-2 that produces ethanol from glucose and xylose. The size of this mitogenome, 46 kb, is different from the size of any reported Fusarium mitogenome. Our results provide insight into the functions and evolution of mitochondrial genes and genomes.

4.
Mitochondrial DNA B Resour ; 1(1): 202-203, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33644344

RESUMO

Huperzine A-producing fungus Penicillium polonicum Hy4 (CCTCC No.M2010086) was isolated from Huperzia serrata (Thunb) Trev. The complete mitochondrial genome of P. polonicum is 28 192 bp in length, containing 15 protein-encoding genes, 27 tRNA genes and two rRNA genes. The whole mitogenome is high in AT content (74.40%) and low in GC content (25.60%). The mitochondrial gene order and arrangement of P. polonicum are identical to those of other Penicillium. Phylogenetic analysis based on 14 concatenated protein-encoding genes showed that P. polonicum was close to P. solitum. This study reports the complete mitogenome of P. polonicum for the first time and provides valuable information for further exploration of mitochondrial evolution.

5.
BMC Microbiol ; 15: 5, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636983

RESUMO

BACKGROUND: The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in Hypocreales. RESULTS: The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50% of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04% identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium spp.) and Hypocrea jecorina. A comparison of mitogenome sizes shows that the length of the intergenic regions or the intronic regions is the major size contributor in most of mitogenomes in Sordariomycetes. Evolutionary analysis shows that rps3 is under positive selection, leading to the display of unique evolutionary characteristics in Hypocreales. Moreover, the variability of trn distribution has a clear impact on gene order in mitogenomes. Gene rearrangement analysis shows that operation of transposition drives the rearrangement events in Pezizomycotina, and most events involve in trn position changes, but no rearrangement was found in Clavicipitaceae. CONCLUSIONS: We present the complete annotated mitogenome sequence of P. chlamydosporia. Based on evolutionary and phylogenetic analyses, we have determined the relationships between the invertebrate-pathogenic fungi in Hypocreales. The invertebrate-pathogenic fungi in Hypocreales referred to in this paper form a monophyletic group sharing a most recent common ancestor. Our rps3 and trn gene order results also establish a foundation for further exploration of the evolutionary trajectory of the fungi in Hypocreales.


Assuntos
DNA Fúngico/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Hypocreales/classificação , Hypocreales/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Mitocondrial/química , Ordem dos Genes , Genes Fúngicos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...