Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071266

RESUMO

Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA