Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1260854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731763

RESUMO

[This corrects the article DOI: 10.3389/fbioe.2023.1184275.].

2.
Biofilm ; 6: 100146, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37560185

RESUMO

Serratia marcescens is now becoming a propensity for its highly antimicrobial-resistant clinical infections. Currently, it provides a novel strategy to prevent and control microbial infection by regulating S. marcescens quorum sensing (QS). Deep-sea-derived fungi are rich in QS bioactive constituents. In this work, the extracts from Cladosporium sphaerospermum SCSGAF0054 showed potent QS-related virulence factors and biofilm-inhibiting activities against S. marcescens NJ01. The swimming motility and multiple virulence factors such as prodigiosin, exopolysaccharide (EPS), lipase, protease and hemolysin were moderately inhibited by the extracts at varied concentrations. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images revealed that C. sphaerospermum extracts moderately arrested biofilm formation and cell viability. Further, real-time quantitative PCR (RT-qPCR) analysis revealed that expressions of genes associated with virulence factors, flhD, fimA, fimC, bsmA, bsmB, pigA, pigC, and shlA, were significantly down-regulated compared with control. In addition, the extracts combined with imipenem inhibited the QS system of S. marcescens NJ01, disrupted its preformed biofilm, released the intra-biofilm bacteria and killed the bacteria gradually. Therefore, the extracts combined with imipenem can partially restore bacterial drug sensitivity. These results suggest that the extracts from SCSGAF0054 effectively interfere with the QS system to treat S. marcescens infection alone or combining with classical antimicrobial drugs.

3.
Front Bioeng Biotechnol ; 11: 1184275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152656

RESUMO

Purpose: MXene is two-dimensional (2D) nanomaterials that comprise transition metal carbides, nitrides, and carbonitrides. Their unique nanostructure attributes it a special role in medical applications. However, bibliometric studies have not been conducted in this field. Therefore, the aim of the present study was to conduct a bibliometric analysis to evaluate the global scientific output of MXene in biomedical research, explore the current situation of this field in the past years and predicte its research hotpots. Methods: We utilized visual analysis softwares Citespace and Bibliometrix to analyze all relevant documents published in the period of 2011-2022. The bibliometric records were obtained from the Web of Science Core Collection. Results: A total of 1,489 publications were analyzed in this study. We observed that China is the country with the largest number of publications, with Sichuan University being the institution with the highest number of publications in this field. The most publications on MXene medicine research in the past year were found primarily in journals about Chemistry/Materials/Physics. Moreover, ACS Applied Materials and Interfaces was found to be the most productive journal in this field. Co-cited references and keyword cluster analysis revealed that #antibacterial# and #photothermal therapy# are the research focus keyword and burst detection suggested that driven wearable electronics were newly-emergent research hot spots. Conclusion: Our bibliometric analysis indicates that research on MXene medical application remains an active field of study. At present, the research focus is on the application of MXene in the field of antibacterial taking advantage of its photothermal properties. In the future, wearable electronics is the research direction of MXene medical application.

4.
Gut Microbes ; 13(1): 1959841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34455923

RESUMO

Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Organelas/fisiologia , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia , Bactérias/classificação , Bactérias/genética , Inibição de Contato/fisiologia , Interações Microbianas/fisiologia , Nanotubos , Sistemas de Secreção Tipo VI/fisiologia
5.
J Mol Graph Model ; 92: 55-64, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31330438

RESUMO

The α9α10 nicotinic acetylcholine receptor (nAChR) is an effective therapeutic target for neuropathic pain. α-Conotoxin RgIA and Vc1.1 are two well-known peptides blocking α9α10 nAChR potently and selectively, which have been extensively investigated as drug candidates. Several key residues were established in previous experimental research. However, the mechanism of the specific interaction still needs to be elucidated in more detail. In this work, we explored the interaction mechanism between RgIA/Vc1.1 and rat α9α10 nAChR using docking and molecular dynamics (MD) simulations. Energy and network analysis programs were used to reveal key residues responsible for their interaction. Our results indicated that the most critical residues were in accord with previous studies. Importantly, several novel residues, including Tyr95, Trp151 in α9 (+)α10 (-) interface as well as Tyr196, Arg59in α10 (+)α9 (-) interface, were found in our models. Furthermore, we analyzed noncovalent interaction energies between RgIA/Vc1.1 and rat α9α10 nAChR. The results showed that three negatively charged residues (Glu197 in α10 subunit, Asp168 in α9 subunit and Asp205 in α10 subunit) were involved in the interaction between RgIA and rat α9α10 nAChR. In contrast, the interaction between Vc1.1 and rat α9α10 nAChR was mediated by the positively charged residues Arg59, Arg81 in α9 (-) subunit. These findings provided further insights into the molecular mechanisms of interaction between RgIA and Vc1.1 and rat α9α10 nAChR.


Assuntos
Conotoxinas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Nicotínicos/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sítios de Ligação , Conotoxinas/metabolismo , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Ratos , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...