Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 7: 100548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534308

RESUMO

In this study, a new method for the detection of ascorbic acid (AA) was proposed. It was based on the protective effect of AA on silver triangular nanoplates (Ag TNPs) against Cl- induced etching reactions. Cl- can attack the corners of Ag TNPs and etch them, causing a morphological shift from triangular nanoplates to nanodiscs. As a result, the solution changes color from blue to yellow. However, in the presence of AA, the corners of Ag TNPs can be protected from Cl- etching, and the blue color of the solution remains unchanged. Using this effect, a selective sensor was designed to detect AA in the range of 0-40.00 µM with a detection limit of 2.17 µM. As the concentration of AA varies in this range, color changes from yellow to blue can be easily observed, so the designed sensor can be used for colorimetric detection. This method can be used to analyze fruit juice samples.

2.
ACS Appl Mater Interfaces ; 8(46): 31611-31616, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27933979

RESUMO

Silicon (Si) has been regarded as a promising high-capacity anode material for developing advanced lithium-ion batteries (LIBs), but the practical application of Si anodes is still unsuccessful mainly due to the insufficient cyclability. To deal with this issue, we propose a new route to construct a dual core-shell structured Si@SiOx@C nanocomposite by direct pyrolysis of poly(methyl methacrylate) (PMMA) polymer on the surface of Si nanoparticles. Since the PMMA polymers can be chemically bonded on the nano-Si surface through the interaction between ester group and Si surface group, and thermally decomposed in the subsequent pyrolysis process with their alkyl chains converted to carbon and the residue oxygen recombining with Si to form SiOx, the dual core-shell structure can be conveniently formed in a one-step procedure. Benefiting from the strong buffering effect of the SiOx interlayer and the efficient blocking action of dense outer carbon layer in preventing electrolyte permeation, the obtained nanocomposite demonstrates a high capacity of 1972 mA h g-1, a stable cycling performance with a capacity retention of >1030 mA h g-1 over 500 cycles, and particularly a superiorly high Coulombic efficiency of >99.5% upon extended cycling, exhibiting a great promise for practical uses. More importantly, the synthetic method proposed in this work is facile and low cost, making it more suitable for large-scale production of high capacity anode for advanced LIBs.

3.
Inorg Chem ; 42(7): 2465-9, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12665385

RESUMO

An empirical method based on chemical bond theory for the estimation of the lattice energy for ionic crystals has been proposed. The lattice energy contributions have been partitioned into bond dependent terms. For an individual bond, the lattice energy contribution made by it has been separated into ionic and covalent parts. Our calculated values of lattice energies agree well with available experimental and theoretical values for diverse ionic crystals. This method, which requires detailed crystallographic information and elaborate computation, might be extended and possibly yield further insights with respect to bond properties of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...