Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302892

RESUMO

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Assuntos
Lycium , Lycium/genética , Lycium/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Glutamatos/metabolismo
2.
J Pharm Sci ; 111(10): 2827-2838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580692

RESUMO

Rosmarinic acid (RA) and tanshinone IIA (TA) which are effective components in Salvia miltiorrhiza show anti-inflammatory potential against atherosclerosis. Based on polysulfated propylene-polyethylene glycol (PPS-PEG), RA was grafted onto this polymer via amide bonds to form a micelle carrier for TA encapsulation: PPS-PEG-RA@TA. A potent inhibitory effect on lipopolysaccharide (LPS) -induced proliferation of endothelial cells with significant intracellular uptake was observed with this system. This could have been the result of release of TA in a reactive oxygen species (ROS) environment and stronger antioxidant effect of RA. The synergistic effect was optimized when the combination was used in a molar ratio of 1:1. Mechanistic studies showed that, compared with PPS-PEG-RA and TA+RA, PPS-PEG-RA@TA micelles could more effectively regulate the nuclear factor-kappa B (NF-κB) pathway to reduce expression of vascular cell adhesion molecule-1 (VCAM-1), inhibit the inflammatory cascade and reduce endothelial-cell injury. One month after intravenous injection of PPS-PEG-RA@TA micelles, the plaque area in murine aortic vessels was reduced significantly, and serious toxic side-effects were not observed in vivo, along with excellent biocompatibility. In summary, PPS-PEG-RA@TA micelles could achieve synergistic treatment of atherosclerosis.


Assuntos
Aterosclerose , Micelas , Abietanos , Amidas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Cinamatos , Depsídeos , Células Endoteliais/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Polietilenoglicóis/química , Polímeros , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Ácido Rosmarínico
3.
Chem Commun (Camb) ; 55(82): 12324-12327, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31556433

RESUMO

A sterically demanding silaamidine (ArN = Si(L)NHAr) ligand was synthesized and employed for the preparation of a yttrium dialkyl complex, which catalytically enabled the cyclotrimerization of isocyanate with high activity and excellent functional group tolerance.

4.
Artif Cells Nanomed Biotechnol ; 47(1): 1710-1721, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31062604

RESUMO

A dual-layer biomimetic cartilage scaffold was prepared by mimicking the structural design, chemical cues and mechanical characteristics of mature articular cartilage. The surface layer was made from collagen (COL), chitosan (CS) and hyaluronic acid sodium (HAS). The transitional layer with microtubule array structure was prepared with COL, CS and silk fibroin (SF). The PLAG microspheres containing kartogenin (KGN) and the polylysine-heparin sodium nanoparticles containing TGF-ß1 (TPHNs) were constructed for the surface, transitional layer, respectively. The SEM result showed that the dual-layer composite scaffold had a double structure similar to natural cartilage. The vitro biocompatibility experiment showed that the biomimetic cartilage scaffold with orientated porous structure was more conducive to the proliferation and adhesion of BMSCs. A rabbit KOA cartilage defect model was established and biomimetic cartilage scaffolds were implanted in the defect area. Compared with the surface layer and transitional layer scaffolds group, the results of dual-layer biomimetic cartilage scaffold group showed that the defects had been completely filled, the boundary between new cartilage and surrounding tissue was difficult to identify, and the morphology of cells in repair tissue was almost in accordance with the normal cartilage after 16 weeks. All those results indicated that the biomimetic cartilage scaffold could effectively repair the defect of KOA, which is related to the fact that the scaffold could guide the morphology, orientation, and proliferation and differentiation of BMSCs. This work could potentially lead to the development of multilayer scaffolds mimicking the zonal organization of articular cartilage.


Assuntos
Materiais Biomiméticos/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Osteoartrite do Joelho/patologia , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Colágeno/química , Fibroínas/química , Ácido Hialurônico/química , Masculino , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Porosidade , Coelhos , Propriedades de Superfície
5.
Nanoscale Res Lett ; 13(1): 261, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30167797

RESUMO

A novel isotype heterojunction ultraviolet photodetector was fabricated by growing n-ZnO nanorod arrays on n-GaN thin films and then spin-coated with graphene quantum dots (GQDs). Exposed to UV illumination with a wavelength of 365 nm, the time-dependent photoresponse of the hybrid detectors manifests high sensitivity and consistent transients with a rise time of 100 ms and a decay time of 120 ms. Meanwhile, an ultra-high specific detectivity (up to ~ 1012 Jones) and high photoresponsivity (up to 34 mA W-1) are obtained at 10 V bias. Compared to the bare heterojunction detectors, the excellent performance of the GQDs decorated n-ZnO/n-GaN heterostructure is attributed to the efficient immobilization of GQDs on the ZnO nanorod arrays. GQDs were exploited as a light absorber and act like an electron donor to effectively improve the effective carrier concentration in interfacial junction. Moreover, appropriate energy band alignment in GQDs decorated ZnO/GaN hybrids can also be a potential factor in facilitating the UV-induced photocurrent and response speed.

6.
Artif Cells Nanomed Biotechnol ; 46(sup1): 721-732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29400583

RESUMO

In this article, we fabricated a bioactive hydrogel composed of glycol chitosan (G-CS) and oxidized hyaluronic acid (OHA) via Schiff base reaction. Cartilage extracellular matrix (ECM) particles with different concentrations were used to functionalize G-CS/OHA (S1) hydrogel. The results demonstrated that S3 (G-CS/OHA/ECM 2% w/v) hydrogel exhibited the most suitable compression strength and provided the optimal environment for proliferation of bone marrow mesenchymal stem cells (BMSCs). To assess the chondroinductivity of ECM in vitro, we compared the chondrogenesis of BMSCs in S1 (G-CS/OHA) and S3 (G-CS/OHA/ECM 2% w/v) hydrogels. The results confirmed that the higher levels of glycosaminoglycans (GAGs) and collagen type II (COL II) were accumulated in S3 hydrogel. In vivo, cartilage defects of rats generated most mature tissue within BMSCs-laden S3 hydrogel (S3/BMSCs group). The tissues were more integrative and contained higher levels of COL II and GAGs compared to the other groups. All these results suggested that the G-CS/OHA hydrogel functionalized with ECM particles is a good candidate biomaterial to be applied in cartilage tissue engineering.


Assuntos
Cartilagem/citologia , Quitosana/química , Matriz Extracelular/metabolismo , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo II/química , Glicosaminoglicanos/química , Hidrogéis/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual
7.
Tissue Eng Part A ; 24(11-12): 990-1000, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29281950

RESUMO

Articular cartilage has poor capability of regeneration due to the avascular surrounding and low metabolic activity. Kartogenin (KGN), an emerging nonprotein heterocyclic compound, was screened to stimulate chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Coculturing BMSCs and chondrocytes was reported to overcome the shortcomings of forming fibroblastic and hypertrophic cartilages. In this study, KGN was incorporated into the Col-Tgel hydrogel to form a Gel/Cell/KGN complex, which fabricated an appropriate microenvironment for effective cartilage regeneration of BMSCs and/or chondrocytes. The complexes that incorporated KGN, BMSCs, and chondrocytes achieved higher lubricin expression and extracellular matrix production, such as characteristic glycosaminoglycans (GAGs) and collagen type II (COL II), compared to the monocultures of BMSCs or chondrocytes in vitro. The complexes compounding KGN, BMSCs, and chondrocytes (at an optimal ratio in the in vitro experiment) were transplanted into rat models to evaluate the repair effects. Our results suggested that the interaction between BMSCs and chondrocytes can substitute the use of growth factors to some degree and indicated the role of KGN in chondrogenesis induction. Besides, it is the first time (to our knowledge) that the expression of lubricin was found to be delayed in the coculture of mixed cells comparing with GAGs and COL II, which could be significant in cartilage tissue engineering.


Assuntos
Anilidas/farmacologia , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo II , Glicosaminoglicanos/metabolismo , Ratos , Engenharia Tecidual
8.
Acta Bioeng Biomech ; 20(4): 65-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30821286

RESUMO

PURPOSE: Biomimetic mineralized composite scaffolds are widely used as natural bone substitute materials in tissue engineering by inducing and assembling bonelike apatite. In this study, the single lamellar structure of graphene oxide (GO) powder was prepared via an improved Hummers' method. METHODS: To better mimic natural bone, the collagen (COL)/Nano-hydroxyapatite (nHA)/graphene oxide (GO) composite material was prepared by simulated body fluid (SBF) method using COL/GO as a matrix template. Hydroxyapatite (HA) with calcium ion deficiency was achieved via biomimetic mineralization, and it had properties closer to those of natural bone than pure HA has. RESULTS: The mineralized COL/nHA/GO composites exhibited loose porous structures, and the connectivity of the holes was good and thus beneficial to the exchange of nutrients and excreted metabolites. Conculsions: Antibacterial and MTT experiment confirmed that the COL/nHA/GO composite material had excellent antibacterial property and biocompatibility. Hence, these results strongly suggested the mineralized COL/nHA/GO composite is a good candidate biomaterial to be applied in bone tissue engineering.


Assuntos
Colágeno/farmacologia , Durapatita/farmacologia , Grafite/farmacologia , Osteoblastos/citologia , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...