Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836497

RESUMO

X-linked hypophosphatemia (XLH) is caused by mutations in PHEX, leading to rickets and osteomalacia. Adults affected with XLH develop a mineralization of the bone-tendon attachment site (enthesis), called enthesopathy, which causes significant pain and impaired movement. Entheses in mice with XLH (Hyp) have enhanced Bone Morphogenetic Protein (BMP) and Indian hedgehog (IHH) signaling. Treatment of Hyp mice with the BMP signaling blocker palovarotene attenuated BMP/IHH signaling in Hyp entheses, thus indicating that BMP signaling plays a pathogenic role in enthesopathy development and that IHH signaling is activated by BMP signaling in entheses. It was previously shown that mRNA expression of Gdf5 is enhanced in Hyp entheses at P14. Thus, to determine a role for GDF5 in enthesopathy development, Gdf5 was deleted globally in Hyp mice and conditionally in Scx + cells of Hyp mice. In both murine models, BMP/IHH signaling was similarly decreased in Hyp entheses, leading to decreased enthesopathy. BMP/IHH signaling remained unaffected in WT entheses with decreased Gdf5 expression. Moreover, deletion of Gdf5 in Hyp entheses starting at P30, after enthesopathy has developed, partially reversed enthesopathy. Taken together, these results demonstrate that while GDF5 is not essential for modulating BMP/IHH signaling in WT entheses, inappropriate GDF5 activity in Scx + cells contributes to XLH enthesopathy development. As such, inhibition of GDF5 signaling may be beneficial for the treatment of XLH enthesopathy.


X-linked hypophosphatemia (XLH) is a rare bone disorder that leads to short stature and poorly mineralized bones. As adults, patients with XLH often develop a mineralization of the bone-tendon attachment site, called enthesopathy, that results in significant pain. We previously showed that Achilles bone-tendon attachment sites (entheses) in mice with XLH (Hyp) have an enthesopathy characterized by increased Bone Morphogenetic Protein (BMP) signaling. In the current studies, we show that treating Hyp mice with the BMP signaling inhibitor palovarotene prevents enthesopathy, demonstrating that the increased BMP signaling in Hyp entheses leads to enthesopathy development. We also reported that expression of Gdf5, which activates BMP signaling, is enhanced in Hyp entheses. Therefore, to determine if the enhanced Gdf5 expression leads to the increased BMP signaling seen Hyp entheses, Gdf5 was deleted from Hyp mice and also deleted specifically in the entheses of Hyp mice. In both mouse models, enthesopathy development was attenuated, demonstrating that the increased Gdf5 expression in Hyp entheses plays a role in enthesopathy development. These data indicate that blocking GDF5 and BMP signaling may prevent enthesopathy in patients with XLH.

3.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38066669

RESUMO

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Animais , Camundongos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/metabolismo , Minerais/uso terapêutico , Fosfatos , Vitamina D/metabolismo
4.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681408

RESUMO

Intact fibroblast growth factor 23 (iFGF23) is a phosphaturic hormone that is cleaved by furin into N-terminal and C-terminal fragments. Several studies have implicated vitamin D in regulating furin in infections. Thus, we investigated the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D] and the vitamin D receptor (VDR) on furin-mediated iFGF23 cleavage. Mice lacking VDR (Vdr-/-) had a 25-fold increase in iFGF23 cleavage, with increased furin levels and activity compared with wild-type (WT) littermates. Inhibition of furin activity blocked the increase in iFGF23 cleavage in Vdr-/- animals and in a Vdr-knockdown osteocyte OCY454 cell line. Chromatin immunoprecipitation revealed VDR binding to DNA upstream of the Furin gene, with more transcription in the absence of VDR. In WT mice, furin inhibition reduced iFGF23 cleavage, increased iFGF23, and reduced serum phosphate levels. Similarly, 1,25(OH)2D reduced furin activity, decreased iFGF23 cleavage, and increased total FGF23. In a post hoc analysis of a randomized clinical trial, we found that ergocalciferol treatment, which increased serum 1,25(OH)2D, significantly decreased serum furin activity and iFGF23 cleavage, compared with placebo. Thus, 1,25(OH)2D inhibits iFGF23 cleavage via VDR-mediated suppression of Furin expression, thereby providing a mechanism by which vitamin D can augment phosphaturic iFGF23 levels.


Assuntos
Calcitriol , Furina , Animais , Camundongos , Calcitriol/farmacologia , Linhagem Celular , Imunoprecipitação da Cromatina , Vitamina D
5.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490334

RESUMO

X-linked hypophosphatemia (XLH) is characterized by high serum fibroblast growth factor 23 (FGF23) levels, resulting in impaired 1,25-dihydroxyvitamin D3 (1,25D) production. Adults with XLH develop a painful mineralization of the tendon-bone attachment site (enthesis), called enthesopathy. Treatment of mice with XLH (Hyp) with 1,25D or an anti-FGF23 Ab, both of which increase 1,25D signaling, prevents enthesopathy. Therefore, we undertook studies to determine a role for impaired 1,25D action in enthesopathy development. Entheses from mice lacking vitamin D 1α-hydroxylase (Cyp27b1) (C-/-) had a similar enthesopathy to Hyp mice, whereas deletion of Fgf23 in Hyp mice prevented enthesopathy, and deletion of both Cyp27b1 and Fgf23 in mice resulted in enthesopathy, demonstrating that the impaired 1,25D action due to high FGF23 levels underlies XLH enthesopathy development. Like Hyp mice, enthesopathy in C-/- mice was observed by P14 and was prevented, but not reversed, with 1,25D therapy. Deletion of the vitamin D receptor in scleraxis-expressing cells resulted in enthesopathy, indicating that 1,25D acted directly on enthesis cells to regulate enthesopathy development. These results show that 1,25D signaling was necessary for normal postnatal enthesis maturation and played a role in XLH enthesopathy development. Optimizing 1,25D replacement in pediatric patients with XLH is necessary to prevent enthesopathy.


Assuntos
Entesopatia , Raquitismo Hipofosfatêmico Familiar , Camundongos , Animais , Raquitismo Hipofosfatêmico Familiar/genética , Calcitriol , 25-Hidroxivitamina D3 1-alfa-Hidroxilase , Fatores de Crescimento de Fibroblastos , Vitamina D
6.
J Steroid Biochem Mol Biol ; 228: 106247, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36639037

RESUMO

The 24th Workshop on Vitamin D was held September 7-9, 2022 in Austin, Texas and covered a wide diversity of research in the vitamin D field from across the globe. Here, we summarize the meeting, individual sessions, awards and presentations given.


Assuntos
Deficiência de Vitamina D , Vitamina D , Humanos , Vitaminas
7.
PLoS One ; 16(5): e0252348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043707

RESUMO

Osteocytes remodel the perilacunar matrix and canaliculi. X-linked hypophosphatemia (XLH) is characterized by elevated serum levels of fibroblast growth factor 23 (FGF23), leading to decreased 1,25 dihydroxyvitamin D3 (1,25D) production and hypophosphatemia. Bones from mice with XLH (Hyp) have enlarged osteocyte lacunae, enhanced osteocyte expression of genes of bone remodeling, and impaired canalicular structure. The altered lacuno-canalicular (LCN) phenotype is improved with 1,25D or anti-FGF23 antibody treatment, pointing to roles for 1,25D and/or phosphate in regulating this process. To address whether impaired 1,25D action results in LCN alterations, the LCN phenotype was characterized in mice lacking the vitamin D receptor (VDR) in osteocytes (VDRf/f;DMP1Cre+). Mice lacking the sodium phosphate transporter NPT2a (NPT2aKO) have hypophosphatemia and high serum 1,25D levels, therefore the LCN phenotype was characterized in these mice to determine if increased 1,25D compensates for hypophosphatemia in regulating LCN remodeling. Unlike Hyp mice, neither VDRf/f;DMP1Cre+ nor NPT2aKO mice have dramatic alterations in cortical microarchitecture, allowing for dissecting 1,25D and phosphate specific effects on LCN remodeling in tibial cortices. Histomorphometric analyses demonstrate that, like Hyp mice, tibiae and calvariae in VDRf/f;DMP1Cre+ and NPT2aKO mice have enlarged osteocyte lacunae (tibiae: 0.15±0.02µm2(VDRf/f;DMP1Cre-) vs 0.19±0.02µm2(VDRf/f;DMP1Cre+), 0.12±0.02µm2(WT) vs 0.18±0.0µm2(NPT2aKO), calvariae: 0.09±0.02µm2(VDRf/f;DMP1Cre-) vs 0.11±0.02µm2(VDRf/f;DMP1Cre+), 0.08±0.02µm2(WT) vs 0.13±0.02µm2(NPT2aKO), p<0.05 all comparisons) and increased immunoreactivity of bone resorption marker Cathepsin K (Ctsk). The osteocyte enriched RNA isolated from tibiae in VDRf/f;DMP1Cre+ and NPT2aKO mice have enhanced expression of matrix resorption genes that are classically expressed by osteoclasts (Ctsk, Acp5, Atp6v0d2, Nhedc2). Treatment of Ocy454 osteocytes with 1,25D or phosphate inhibits the expression of these genes. Like Hyp mice, VDRf/f;DMP1Cre+ and NPT2aKO mice have impaired canalicular organization in tibia and calvaria. These studies demonstrate that hypophosphatemia and osteocyte-specific 1,25D actions regulate LCN remodeling. Impaired 1,25D action and low phosphate levels contribute to the abnormal LCN phenotype observed in XLH.


Assuntos
Remodelação Óssea , Calcitriol/deficiência , Raquitismo Hipofosfatêmico Familiar/metabolismo , Osteócitos , Deficiência de Vitamina D/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteócitos/metabolismo , Osteócitos/patologia
8.
Endocrinology ; 160(10): 2204-2214, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31237611

RESUMO

Phosphate homeostasis is critical for many cellular processes and is tightly regulated. The sodium-dependent phosphate cotransporter, NaPi2a, is the major regulator of urinary phosphate reabsorption in the renal proximal tubule. Its activity is dependent upon its brush border localization that is regulated by fibroblast growth factor 23 (FGF23) and PTH. High levels of FGF23, as are seen in the Hyp mouse model of human X-linked hypophosphatemia, lead to renal phosphate wasting. Long-term treatment of Hyp mice with 1,25-dihydroxyvitamin D (1,25D) or 1,25D analogues has been shown to improve renal phosphate wasting in the setting of increased FGF23 mRNA expression. Studies were undertaken to define the cellular and molecular basis for this apparent FGF23 resistance. 1,25D increased FGF23 protein levels in the cortical bone and circulation of Hyp mice but did not impair FGF23 cleavage. 1,25D attenuated urinary phosphate wasting as early as one hour postadministration, without suppressing FGF23 receptor/coreceptor expression. Although 1,25D treatment induced expression of early growth response 1, an early FGF23 responsive gene required for its phosphaturic effects, it paradoxically enhanced renal phosphate reabsorption and NaPi2a protein expression in renal brush border membranes (BBMs) within one hour. The Na-H+ exchange regulatory factor 1 (NHERF1) is a scaffolding protein thought to anchor NaPi2a to the BBM. Although 1,25D did not alter NHERF1 protein levels acutely, it enhanced NHERF1-NaPi2a interactions in Hyp mice. 1,25D also prevented the decrease in NHERF1/NaPi2a interactions in PTH-treated wild-type mice. Thus, these investigations identify a novel role for 1,25D in the hormonal regulation of renal phosphate handling.


Assuntos
Células Epiteliais/efeitos dos fármacos , Hipofosfatemia Familiar/prevenção & controle , Hipofosfatemia/genética , Túbulos Renais Proximais/citologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Vitamina D/análogos & derivados , Animais , Linhagem Celular , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipofosfatemia/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Transporte Proteico , Receptores de Fatores de Crescimento de Fibroblastos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Vitamina D/farmacologia
9.
Development ; 145(15)2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30002128

RESUMO

The bone tendon attachment site known as the enthesis comprises a transitional zone between bone and tendon, and plays an important role in enabling movement at this site. X-linked hypophosphatemia (XLH) is characterized by impaired activation of vitamin D, elevated serum FGF23 levels and low serum phosphate levels, which impair bone mineralization. Paradoxically, an important complication of XLH is mineralization of the enthesis (enthesopathy). Studies were undertaken to identify the cellular and molecular pathways important for normal post-natal enthesis maturation and to examine their role during the development of enthesopathy in mice with XLH (Hyp). The Achilles tendon entheses of Hyp mice demonstrate an expansion of hypertrophic-appearing chondrogenic cells by P14. Post-natally, cells in wild-type and Hyp entheses similarly descend from scleraxis- and Sox9-expressing progenitors; however, Hyp entheses exhibit an expansion of Sox9-expressing cells, and enhanced BMP and IHH signaling. These results support a role for enhanced BMP and IHH signaling in the development of enthesopathy in XLH.


Assuntos
Entesopatia/complicações , Entesopatia/genética , Raquitismo Hipofosfatêmico/complicações , Raquitismo Hipofosfatêmico/genética , Fosfatase Alcalina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Modelos Animais de Doenças , Entesopatia/tratamento farmacológico , Entesopatia/patologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Proteínas Hedgehog/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Raquitismo Hipofosfatêmico/tratamento farmacológico , Raquitismo Hipofosfatêmico/patologia , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/uso terapêutico
10.
Endocrinology ; 159(5): 2165-2172, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635291

RESUMO

Serum levels of fibroblast growth factor 23 (FGF23) markedly increase with renal impairment, with FGF23 levels correlating with the presence of left ventricular hypertrophy (LVH) and mortality in patients with chronic kidney disease (CKD). FGF23 activates calcineurin/nuclear factor of activated T cell (NFAT) signaling and induces hypertrophy in murine cardiomyocytes. X-linked hypophosphatemia (XLH) is characterized by high circulating levels of FGF23 but, in contrast to CKD, is associated with hypophosphatemia. The cardiac effects of high circulating levels of FGF23 in XLH are not well defined. Thus, studies were undertaken to define the cardiac phenotype in the mouse model of XLH (Hyp mice). Echocardiographic and histological analyses demonstrated that Hyp left ventricles (LVs) are smaller than those of wild-type mice. Messenger RNA expression of cardiac hypertrophy markers was not altered in the LV or right ventricle of Hyp mice. However, the Hyp LVs had increased expression of the NFAT target genes NFATc1 and RCAN1. To determine whether phosphate alone can induce markers of hypertrophy, differentiated C2C12 myocytes were treated with phosphate. Phosphate treatment increased expression of cardiac hypertrophy markers, supporting a primary role for phosphate in inducing LVH. Although previous studies showed that increased circulating FGF23 and phosphate levels are associated with LVH, our results demonstrated that in XLH, high circulating levels of FGF23 in the setting of hypophosphatemia do not induce cardiac hypertrophy.


Assuntos
Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Esquerda/genética , Miocárdio/patologia , Animais , Proteínas de Ligação ao Cálcio , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Fator de Crescimento de Fibroblastos 23 , Expressão Gênica , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Proteínas Musculares/genética , Miocárdio/metabolismo , Fatores de Transcrição NFATC/genética , Tamanho do Órgão , RNA Mensageiro/metabolismo
11.
J Bone Miner Res ; 33(3): 499-509, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29083055

RESUMO

Osteocytes remodel their surrounding perilacunar matrix and canalicular network to maintain skeletal homeostasis. Perilacunar/canalicular remodeling is also thought to play a role in determining bone quality. X-linked hypophosphatemia (XLH) is characterized by elevated serum fibroblast growth factor 23 (FGF23) levels, resulting in hypophosphatemia and decreased production of 1,25 dihydroxyvitamin D (1,25D). In addition to rickets and osteomalacia, long bones from mice with XLH (Hyp) have impaired whole-bone biomechanical integrity accompanied by increased osteocyte apoptosis. To address whether perilacunar/canalicular remodeling is altered in Hyp mice, histomorphometric analyses of tibia and 3D intravital microscopic analyses of calvaria were performed. These studies demonstrate that Hyp mice have larger osteocyte lacunae in both the tibia and calvaria, accompanied by enhanced osteocyte mRNA and protein expression of matrix metalloproteinase 13 (MMP13) and genes classically used by osteoclasts to resorb bone, such as cathepsin K (CTSK). Hyp mice also exhibit impaired canalicular organization, with a decrease in number and branching of canaliculi extending from tibial and calvarial lacunae. To determine whether improving mineral ion and hormone homeostasis attenuates the lacunocanalicular phenotype, Hyp mice were treated with 1,25D or FGF23 blocking antibody (FGF23Ab). Both therapies were shown to decrease osteocyte lacunar size and to improve canalicular organization in tibia and calvaria. 1,25D treatment of Hyp mice normalizes osteocyte expression of MMP13 and classic osteoclast markers, while FGF23Ab decreases expression of MMP13 and selected osteoclast markers. Taken together, these studies point to regulation of perilacunar/canalicular remodeling by physiologic stimuli including hypophosphatemia and 1,25D. © 2017 American Society for Bone and Mineral Research.


Assuntos
Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Hormônios/uso terapêutico , Osteócitos/metabolismo , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Biomarcadores/metabolismo , Remodelação Óssea , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/imunologia , Camundongos Endogâmicos C57BL , Osteócitos/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/patologia , Tíbia/efeitos dos fármacos , Tíbia/patologia
12.
J Biol Chem ; 292(8): 3164-3171, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28073913

RESUMO

Hypophosphatemia causes rickets by impairing hypertrophic chondrocyte apoptosis. Phosphate induction of MEK1/2-ERK1/2 phosphorylation in hypertrophic chondrocytes is required for phosphate-mediated apoptosis and growth plate maturation. MEK1/2 can be activated by numerous molecules including Raf isoforms. A- and B-Raf ablation in chondrocytes does not alter skeletal development, whereas ablation of C-Raf decreases hypertrophic chondrocyte apoptosis and impairs vascularization of the growth plate. However, ablation of C-Raf does not impair phosphate-induced ERK1/2 phosphorylation in vitro, but leads to rickets by decreasing VEGF protein stability. To determine whether Raf isoforms are required for phosphate-induced hypertrophic chondrocyte apoptosis, mice lacking all three Raf isoforms in chondrocytes were generated. Raf deletion caused neonatal death and a significant expansion of the hypertrophic chondrocyte layer of the growth plate, accompanied by decreased cleaved caspase-9. This was associated with decreased phospho-ERK1/2 immunoreactivity in the hypertrophic chondrocyte layer and impaired vascular invasion. These data further demonstrated that Raf kinases are required for phosphate-induced ERK1/2 phosphorylation in cultured hypertrophic chondrocytes and perform essential, but partially redundant roles in growth plate maturation.


Assuntos
Condrócitos/metabolismo , Condrogênese , Lâmina de Crescimento/crescimento & desenvolvimento , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Apoptose , Desenvolvimento Ósseo , Células Cultivadas , Condrócitos/citologia , Condrócitos/patologia , Lâmina de Crescimento/metabolismo , Camundongos Endogâmicos C57BL , Fosfatos/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Quinases raf/metabolismo
13.
J Bone Miner Res ; 31(5): 929-39, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26751835

RESUMO

X-linked hypophosphatemia (XLH) is characterized by impaired renal tubular reabsorption of phosphate owing to increased circulating FGF23 levels, resulting in rickets in growing children and impaired bone mineralization. Increased FGF23 decreases renal brush border membrane sodium-dependent phosphate transporter IIa (Npt2a) causing renal phosphate wasting, impairs 1-α hydroxylation of 25-hydroxyvitamin D, and induces the vitamin D 24-hydroxylase, leading to inappropriately low circulating levels of 1,25-dihydroxyvitamin D (1,25D). The goal of therapy is prevention of rickets and improvement of growth in children by phosphate and 1,25D supplementation. However, this therapy is often complicated by hypercalcemia and nephrocalcinosis and does not always prevent hyperparathyroidism. To determine if 1,25D or blocking FGF23 action can improve the skeletal phenotype without phosphate supplementation, mice with XLH (Hyp) were treated with daily 1,25D repletion, FGF23 antibodies (FGF23Ab), or biweekly high-dose 1,25D from d2 to d75 without supplemental phosphate. All treatments maintained normocalcemia, increased serum phosphate, and normalized parathyroid hormone levels. They also prevented the loss of Npt2a, α-Klotho, and pERK1/2 immunoreactivity observed in the kidneys of untreated Hyp mice. Daily treatment with 1,25D decreased urine phosphate losses despite a marked increase in bone FGF23 mRNA and in circulating FGF23 levels. Daily 1,25D was more effective than other treatments in normalizing the growth plate and metaphyseal organization. In addition to being the only therapy that normalized lumbar vertebral height and body weight, daily 1,25D therapy normalized bone geometry and was more effective than FGF23Ab in improving trabecular bone structure. Daily 1,25D and FGF23Ab improved cortical microarchitecture and whole-bone biomechanical properties more so than biweekly 1,25D. Thus, monotherapy with 1,25D improves growth, skeletal microarchitecture, and bone strength in the absence of phosphate supplementation despite enhancing FGF23 expression, demonstrating that 1,25D has direct beneficial effects on the skeleton in XLH, independent of its role in phosphate homeostasis. © 2016 American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea/efeitos dos fármacos , Calcitriol/farmacologia , Raquitismo Hipofosfatêmico Familiar , Fatores de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Esqueleto , Animais , Modelos Animais de Doenças , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/patologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Esqueleto/metabolismo , Esqueleto/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
14.
Development ; 143(2): 348-55, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657770

RESUMO

Extracellular phosphate plays a key role in growth plate maturation by inducing Erk1/2 (Mapk3/1) phosphorylation, leading to hypertrophic chondrocyte apoptosis. The Raf kinases induce Mek1/2 (Map2k1/2) and Erk1/2 phosphorylation; however, a role for Raf kinases in endochondral bone formation has not been identified. Ablation of both A-Raf (Araf) and B-Raf (Braf) in chondrocytes does not alter growth plate maturation. Because c-Raf (Raf1) phosphorylation is increased by extracellular phosphate and c-Raf is the predominant isoform expressed in hypertrophic chondrocytes, chondrocyte-specific c-Raf knockout mice (c-Raf(f/f);ColII-Cre(+)) were generated to define a role for c-Raf in growth plate maturation. In vivo studies demonstrated that loss of c-Raf in chondrocytes leads to expansion of the hypertrophic layer of the growth plate, with decreased phospho-Erk1/2 immunoreactivity and impaired hypertrophic chondrocyte apoptosis. However, cultured hypertrophic chondrocytes from these mice did not exhibit impairment of phosphate-induced Erk1/2 phosphorylation. Studies performed to reconcile the discrepancy between the in vitro and in vivo hypertrophic chondrocyte phenotypes revealed normal chondrocyte differentiation in c-Raf(f/f);ColII-Cre(+) mice and lack of compensatory increase in the expression of A-Raf and B-Raf. However, VEGF (Vegfa) immunoreactivity in the hypertrophic chondrocytes of c-Raf(f/f);ColII-Cre(+) mice was significantly reduced, associated with increased ubiquitylation of VEGF protein. Thus, c-Raf plays an important role in growth plate maturation by regulating vascular invasion, which is crucial for replacement of terminally differentiated hypertrophic chondrocytes by bone.


Assuntos
Lâmina de Crescimento/citologia , Lâmina de Crescimento/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Masculino , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-raf/genética
15.
Endocrinology ; 155(10): 3750-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25057796

RESUMO

Phosphate and parathyroid hormone related peptide (PTHrP) are required for normal growth plate maturation. Hypophosphatemia impairs hypertrophic chondrocyte apoptosis leading to rachitic expansion of the growth plate; however, the effect of phosphate restriction on chondrocyte differentiation during endochondral bone formation has not been examined. Investigations were, therefore, undertaken to address whether phosphate restriction alters the maturation of embryonic d15.5 murine metatarsal elements. Metatarsals cultured in low phosphate media exhibited impaired chondrocyte differentiation, analogous to that seen with PTHrP-treatment of metatarsals cultured in control media. Because phosphate restriction acutely increases PTHrP expression in cultured metatarsals, studies were undertaken to determine if this increase in PTHrP plays a pathogenic role in the impaired chondrocyte differentiation observed under low phosphate conditions. In contrast to what was observed with wild-type metatarsal elements, phosphate restriction did not impair the differentiation of metatarsals isolated from PTHrP heterozygous or PTHrP knockout mice. In vivo studies in postnatal mice demonstrated that PTHrP haploinsufficiency also prevents the impaired hypertrophic chondrocyte apoptosis observed with phosphate restriction. To determine how signaling through the PTH/PTHrP receptor antagonizes the pro-apoptotic effects of phosphate, investigations were performed in primary murine hypertrophic chondrocytes. Receptor activation impaired phosphate-induced Erk1/2 phosphorylation specifically in the mitochondrial fraction and decreased levels of mitochondrial Bad, while increasing cytosolic phospho-Bad. Thus, these data demonstrate that phosphate restriction attenuates chondrocyte differentiation as well as impairing hypertrophic chondrocyte apoptosis and implicate a functional role for the PTH/PTHrP signaling pathway in the abnormalities in chondrocyte differentiation and hypertrophic chondrocyte apoptosis observed under phosphate restricted conditions.


Assuntos
Condrócitos/citologia , Condrogênese/fisiologia , Osteogênese/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fosfatos/deficiência
17.
Int J Radiat Oncol Biol Phys ; 80(1): 291-300, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20932676

RESUMO

PURPOSE: To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between software Version 1.4.13 and Version 1.4.11 (referred to as "new" and "old" protocols, respectively, in the following text). This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the head-and-neck and pelvic regions. METHODS AND MATERIALS: A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms with diameter of 16 cm (head phantom) and 32 cm (body phantom) were used to measure the weighted cone-beam computed tomography dose index (CBCTDIw) of the Varian CBCT system. The absorbed dose of different organs was measured in a female anthropomorphic phantom with thermoluminescent dosimeters (TLD) and the total effective dose was estimated according to International Commission on Radiological Protection (ICRP) Publication 103. The dose measurement and image quality were studied for head-and-neck and pelvic regions, and comparison was made between the new and old protocols. RESULTS: The values of the new CBCTDIw head-and-neck and pelvic protocols were 36.6 and 29.4 mGy, respectively. The total effective doses from the new head-and-neck and pelvic protocols were 1.7 and 8.2 mSv, respectively. The absorbed doses of lens for the new 200° and old 360° head-and-neck protocols were 3.8 and 59.4 mGy, respectively. The additional secondary cancer risk from daily CBCT might be up to 2.8%. CONCLUSIONS: The new Varian CBCT provided volumetric information for image guidance with acceptable image quality and lower radiation dose. This imaging tool gave a better standard for patient daily setup verification.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Radioterapia Assistida por Computador/métodos , Validação de Programas de Computador , Protocolos Clínicos , Tomografia Computadorizada de Feixe Cônico/normas , Feminino , Cabeça/diagnóstico por imagem , Humanos , Pescoço/diagnóstico por imagem , Aceleradores de Partículas , Pelve/diagnóstico por imagem , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/instrumentação , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos
18.
Blood ; 114(19): 4233-42, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19729518

RESUMO

The tightly regulated production of distinct erythrocyte protein 4.1R isoforms involves differential splicing of 3 mutually exclusive first exons (1A, 1B, 1C) to the alternative 3' splice sites (ss) of exon 2'/2. Here, we demonstrate that exon 1 and 2'/2 splicing diversity is regulated by a transcription-coupled splicing mechanism. We also implicate distinctive regulatory elements that promote the splicing of exon 1A to the distal 3' ss and exon 1B to the proximal 3' ss in murine erythroleukemia cells. A hybrid minigene driven by cytomegalovirus promoter mimicked 1B-promoter-driven splicing patterns but differed from 1A-promoter-driven splicing patterns, suggesting that promoter identity affects exon 2'/2 splicing. Furthermore, splicing factor SF2/ASF ultraviolet (UV) cross-linked to the exon 2'/2 junction CAGAGAA, a sequence that overlaps the distal U2AF(35)-binding 3' ss. Consequently, depletion of SF2/ASF allowed exon 1B to splice to the distal 3' ss but had no effect on exon 1A splicing. These findings identify for the first time that an SF2/ASF binding site also can serve as a 3' ss in a transcript-dependent manner. Taken together, our results suggest that 4.1R gene expression involves transcriptional regulation coupled with a complex splicing regulatory network.


Assuntos
Processamento Alternativo , Proteínas Sanguíneas/genética , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação/genética , Proteínas Sanguíneas/biossíntese , Linhagem Celular , Proteínas do Citoesqueleto/biossíntese , DNA Polimerase II/metabolismo , Primers do DNA/genética , Éxons , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Proteínas de Membrana/biossíntese , Camundongos , Proteínas dos Microfilamentos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Fator de Processamento U2AF , Distribuição Tecidual , Transcrição Gênica , Ativação Transcricional , Células Tumorais Cultivadas
19.
Mol Biol Cell ; 16(1): 117-27, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15525677

RESUMO

The nonerythrocyte isoform of the cytoskeletal protein 4.1R (4.1R) is associated with morphologically dynamic structures during cell division and has been implicated in mitotic spindle function. In this study, we define important 4.1R isoforms expressed in interphase and mitotic cells by RT-PCR and mini-cDNA library construction. Moreover, we show that 4.1R is phosphorylated by p34cdc2 kinase on residues Thr60 and Ser679 in a mitosis-specific manner. Phosphorylated 4.1R135 isoform(s) associate with tubulin and Nuclear Mitotic Apparatus protein (NuMA) in intact HeLa cells in vivo as well as with the microtubule-associated proteins in mitotic asters assembled in vitro. Recombinant 4.1R135 is readily phosphorylated in mitotic extracts and reconstitutes mitotic aster assemblies in 4.1R-immunodepleted extracts in vitro. Furthermore, phosphorylation of these residues appears to be essential for the targeting of 4.1R to the spindle poles and for mitotic microtubule aster assembly in vitro. Phosphorylation of 4.1R also enhances its association with NuMA and tubulin. Finally, we used siRNA inhibition to deplete 4.1R from HeLa cells and provide the first direct genetic evidence that 4.1R is required to efficiently focus mitotic spindle poles. Thus, we suggest that 4.1R is a member of the suite of direct cdc2 substrates that are required for the establishment of a bipolar spindle.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Proteínas de Membrana/fisiologia , Mitose , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Biblioteca Gênica , Células HeLa , Humanos , Interfase , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fenótipo , Fosforilação , Plasmídeos/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
20.
J Biol Chem ; 279(33): 34595-602, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15184364

RESUMO

Non-erythroid protein 4.1R (4.1R) consists of a complex family of isoforms. We have shown that 4.1R isoforms localize at the mitotic spindle/spindle poles and associate in a complex with the mitotic-spindle organization proteins Nuclear Mitotic Apparatus protein (NuMA), dynein, and dynactin. We addressed the mitotic function of 4.1R by investigating its association with microtubules, the main component of the mitotic spindles, and its role in mitotic aster assembly in vitro. 4.1R appears to partially co-localize with microtubules throughout the mitotic stages of the cell cycle. In vitro sedimentation assays showed that 4.1R isoforms directly interact with microtubules. Glutathione S-transferase (GST) pull-down assays using GST-4.1R fusions and mitotic cell extracts further showed that the association of 4.1R with tubulin results from both the membrane-binding domain and C-terminal domain of 4.1R. Moreover, 4.1R, but not actin, is a mitotic microtubule-associated protein; 4.1R associates with microtubules in the microtubule pellet of the mitotic asters assembled in mammalian cell-free mitotic extract. The organization of microtubules into asters depends on 4.1R in that immunodepletion of 4.1R from the extract resulted in randomly dispersed microtubules. Furthermore, adding a 135-kDa recombinant 4.1R reconstituted the mitotic asters. Finally, we demonstrated that a mitotic 4.1R isoform appears to form a complex in vivo with tubulin and NuMA in highly synchronized mitotic HeLa extracts. Our results suggest that a 135-kDa non-erythroid 4.1R is important to cell division, because it participates in the formation of mitotic spindles and spindle poles through its interaction with mitotic microtubules.


Assuntos
Proteínas Sanguíneas/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Fuso Acromático , Proteínas Sanguíneas/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto , DNA Complementar/metabolismo , Complexo Dinactina , Dineínas/metabolismo , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Proteínas de Membrana , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Plasmídeos/metabolismo , Testes de Precipitina , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...