Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Autoimmun ; 8: 100225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38292070

RESUMO

Background: Patients with ulcerative colitis (UC) often exhibit susceptibilities to multiple autoimmune diseases such as Sjogren's syndrome, primary sclerosing cholangitis, systemic lupus erythematosus, and insulin-dependent diabetes mellitus. This propensity likely stems from common pathogenic mechanisms underlying immune-mediated conditions. This report highlights the occurrence of autoimmune thyroid disease during UC exacerbations. Notably, the patient displayed petrified auricles.Case Summary.A 57-year-old male complained of sustained abdominal pain, diarrhea, hematochezia, and mucus for a duration of 20 days. The diagnosis of UC was confirmed via colonoscopy, histopathological examination, and small bowel MRE. Clinical evaluations revealed bilateral ectopic ossification in his ears, which appeared to develop over an unspecified timeframe. Imaging and histological evaluations substantiated the ectopic ossification diagnosis while eliminating the possibility of adrenal insufficiency. The presented case offers a unique instance of bilateral auricular ossification, which is hypothesized to result from hyperthyroidism. Conclusion: Our case report underscores the necessity of enhancing awareness of the rare complications associated with UC. Medical practitioners should recognize the potential overlap of autoimmune thyroid disorders in UC patients. It is imperative to test for thyroid-related antibodies in such individuals, irrespective of overt thyroid dysfunction.

2.
J Transl Med ; 17(1): 259, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395064

RESUMO

BACKGROUND: Ovarian cancer is the leading cause of death in gynecological cancer. Cancer stem cells (CSCs) contribute to the occurrence, progression and resistance. Small nucleolar RNAs (SnoRNAs), a class of small molecule non-coding RNA, involve in the cancer cell stemness and tumorigenesis. METHODS: In this study, we screened out SNORNAs related to ovarian patient's prognosis by analyzing the data of 379 cases of ovarian cancer patients in the TCGA database, and analyzed the difference of SNORNAs expression between OVCAR-3 (OV) sphere-forming (OS) cells and OV cells. After overexpression or knockdown SNORD89, the expression of Nanog, CD44, and CD133 was measured by qRT-PCR or flow cytometry analysis in OV, CAOV-3 (CA) and OS cells, respectively. CCK-8 assays, plate clone formation assay and soft agar colony formation assay were carried out to evaluate the changes of cell proliferation and self-renewal ability. Scratch migration assay and trans-well invasion analysis were used for assessing the changes of migration and invasion ability. RESULTS: High expression of SNORD89 indicates the poor prognosis of ovarian cancer patients and was associated with patients' age, therapy outcome. SNORD89 highly expressed in ovarian cancer stem cells. The overexpression of SNORD89 resulted in the increased stemness markers, S phase cell cycle, cell proliferation, invasion and migration ability in OV and CA cells. Conversely, these phenomena were reversed after SNORD89 silencing in OS cells. Further, we found that SNORD89 could upregulate c-Myc and Notch1 expression in mRNA and protein levels. SNORD89 deteriorates the prognosis of ovarian cancer patients by regulating Notch1-c-Myc pathway to promote cell stemness and acts as an oncogene in ovarian tumorigenesis. Consequently, SNORD89 can be a novel prognostic biomarker and therapeutic target for ovarian cancer.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Nucleolar Pequeno/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fenótipo , Prognóstico , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Nucleolar Pequeno/genética
3.
Mol Oncol ; 13(2): 403-421, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30536571

RESUMO

Ovarian cancer stem cells (OCSCs) are sources of tumor chemoresistance and recurrence. A hypoxic microenvironment contributes to the chemoresistance of cancer stem cells (CSCs), but the underlying mechanism is not fully understood yet. Here, we show that increased HIF-2α expression is associated with enhanced stemness of OCSCs and poor outcomes in ovarian cancer patients. OVCAR-3 and CAOV-3 sphere-forming (OVCAR-3 S and CAOV-3 S) cells with OCSC-like properties showed strong resistance to adriamycin (ADR). Hypoxia (1% O2 ) induced high expression of both HIF-1α and especially HIF-2α, and increased the resistance of OVCAR-3 S and CAOV-3 S cells to ADR. Notably, treatment with ADR further increased the expression of HIF-2α, but not that of HIF-1α. Knockdown of HIF-2α expression substantially attenuated the resistance of OVCAR-3 S and CAOV-3 S cells to ADR, and the HIF-2α overexpression had the opposite effect. Furthermore, in mouse models xenografted with OCSCs, HIF-2α depletion significantly inhibited tumor growth and sensitized OCSCs to ADR in vivo. Mechanistically, HIF-2α directly promotes transcription/expression of BCRP, a gene encoding a transporter protein responsible for pumping drugs (e.g., ADR) out of cells, which in turn increases drug resistance due to increased drug transportation. Collectively, our studies reveal a novel drug-resistant mechanism in ovarian cancer by which hypoxia (and ADR treatment)-induced HIF-2α overexpression endows OCSCs with resistance to ADR by promoting BCRP expression and ADR transportation. Therefore, targeting the HIF-2α/BCRP axis holds therapeutic potential for treating drug-resistant ovarian cancer.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transporte Proteico/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
4.
J Exp Clin Cancer Res ; 37(1): 256, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340507

RESUMO

BACKGROUND: Hypoxic tumor microenvironment and maintenance of stemness contribute to drug resistance in breast cancer. However, whether Hypoxia-inducible factor-2α (HIF-2α) in hypoxic tumor microenvironment mediates conversion to a stem cell phenotype and chemoresistance of breast tumors has not been elucidated. METHODS: The mRNA and protein expressions of HIF-1α, HIF-2α, Wnt and Notch pathway were determined using qRT-PCR and western blot. Cell viability and renew ability were assessed by MTT, Flow cytometric analysis and soft agar colony formation. RESULTS: In our study, acute hypoxia (6-12 h) briefly increased HIF-1α expression, while chronic hypoxia (48 h) continuously enhanced HIF-2α expression and induced the resistance of breast cancer cells to Paclitaxel (PTX). Furthermore, HIF-2α overexpression induced a stem cell phenotype, the resistance to PTX and enhanced protein expression of stem cell markers, c-Myc, OCT4 and Nanog. Most importantly, Wnt and Notch signaling, but not including Shh, pathways were both activated by HIF-2α overexpression. Dickkopf-1 (DKK-1), a Wnt pathway inhibitor, and L685,458, an inhibitor of the Notch pathway, reversed the resistance to PTX and stem phenotype conversion induced by HIF-2α overexpression. In addition, HIF-2α overexpression enhanced tumorigenicity and resistance of xenograft tumors to PTX, increased activation of the Wnt and Notch pathways and induced a stem cell phenotype in vivo. CONCLUSION: In conclusion, HIF-2α promoted stem phenotype conversion and induced resistance to PTX by activating Wnt and Notch pathways.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Camundongos , Transplante de Neoplasias , Paclitaxel/farmacologia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA