Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 22(6): 2124-2128, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011898

RESUMO

A three-layer chirality relay model is proposed for Rh(I)-mediated enantioselective siletane activation. A chiral ligand in the back layer controls the position of the alkyne-coordinated metal center in the middle layer, which then provides a chiral environment for the incoming substrate at the front layer. A two-dimensional contour map analysis further clarified this model.

2.
J Am Chem Soc ; 141(14): 5772-5780, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30887803

RESUMO

Terminal alkynes have become one of the most versatile building blocks for C-C bond construction in the past few decades, and they are usually considered to convert to acetylides before further transformations. In this study, a novel direct nucleophilic addition mode for Cu(I)-catalyzed cross-coupling of terminal alkynes and N-tosylhydrazones to synthesize chiral allenes is proposed, and it was investigated by density functional theory with the M11-L density functional. Three different reaction pathways were considered and investigated. The computational results show that the proposed reaction pathway, which includes direct nucleophilic attack of protonated acetylene, deprotonation of the vinyl cation, and catalyst regeneration, is the most favorable pathway. Another possible deprotonation-carbenation-insertion pathway is shown to be unfavorable. The direct nucleophilic addition step is the rate- and enantioselectivity-determining step in the catalytic cycle. Noncovalent interaction analysis shows that the steric effect between the methyl group of the carbene moiety and the naphthalyl group of the bisoxazoline ligand is important to control the enantioselectivity. In addition, calculation of a series of chiral bisoxazoline ligands shows that a bulky group on the oxazoline ring is favorable for high enantioselectivity, which agrees with experimental observations. Moreover, copper acetylides are stable, and their generation is a favorable pathway in the absence of chiral bisoxazoline ligands.

3.
Chem Asian J ; 14(5): 655-661, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30663231

RESUMO

Palladium (Pd)-catalyzed radical oxidative C-H carbonylation of alkanes is a useful method for functionalizing hydrocarbons, but there is still a lack of understanding of the mechanism, which restricts the application of this reaction. In this work, density functional theory (DFT) calculations were carried out to study the mechanism for a Pd-catalyzed radical esterification reaction. Two plausible reaction pathways have been proposed and validated by DFT calculations. The computational results reveal that the generated alkyl radical prefers to add to the carbon monoxide (CO) molecule to form a carbonyl radical before bonding with the Pd species. Radical addition onto Pd followed by CO migratory insertion was unfavorable owing to the high energy barrier of the migratory insertion step. The regioselectivity of the C(sp3 )-H carbonylation was also investigated by DFT. The results show that the regioselectivity is controlled by both the bond dissociation energy of the reacting C-H bond and the stability of the corresponding generated carbon radical. Competitive side reactions also affected the yield and regioselectivity owing to the rapid consumption of the stable radical intermediate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...