Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731543

RESUMO

Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a promising nucleic acid-based gene targeting approach for gene expression knock-down and modulation. The RNase P-EGS strategy is unique as an EGS can be designed to basepair any mRNA sequence and recruit intracellular RNase P for hydrolysis of the target mRNA. In this study, we provide the first direct evidence that the RNase P-based approach effectively blocks the gene expression and replication of herpes simplex virus 2 (HSV-2), the causative agent of genital herpes. We constructed EGSs to target the mRNA encoding HSV-2 single-stranded DNA binding protein ICP8, which is essential for viral DNA genome replication and growth. In HSV-2 infected cells expressing a functional EGS, ICP8 levels were reduced by 85%, and viral growth decreased by 3000 folds. On the contrary, ICP8 expression and viral growth exhibited no substantial differences between cells expressing no EGS and those expressing a disabled EGS with mutations precluding RNase P recognition. The anti-ICP8 EGS is specific in targeting ICP8 because it only affects ICP8 expression but does not affect the expression of the other viral immediate-early and early genes examined. This study shows the effective and specific anti-HSV-2 activity of the RNase P-EGS approach and demonstrates the potential of EGS RNAs for anti-HSV-2 applications.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 2 , Replicação Viral , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiologia , Humanos , Ribonuclease P/metabolismo , Ribonuclease P/genética , Animais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Chlorocebus aethiops , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Vero , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Ligação a DNA
2.
J Biol Chem ; 300(6): 107318, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677513

RESUMO

Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.

3.
Methods Mol Biol ; 2666: 55-67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166656

RESUMO

Ribonuclease P (RNase P), which may consist of both protein subunits and a catalytic RNA part, is responsible for 5' maturation of tRNA by cleaving the 5'-leader sequence. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 RNA) and a protein factor (C5 protein). In human cells, RNase P holoenzyme consists of an RNA subunit (H1 RNA) and multiple protein subunits that include human RPP29 protein. M1GS, a sequence specific targeting ribozyme derived from M1 RNA, can be constructed to target a specific mRNA to degrade it in vitro. Recent studies have shown that M1GS ribozymes are efficient in blocking the expression of viral mRNAs in cultured cells and in animals. These results suggest that RNase P ribozymes have the potential to be useful in basic research and in clinical applications. It has been shown that RNase P binding proteins, such as C5 protein and RPP29, can enhance the activities of M1GS RNA in processing a natural tRNA substrate and a target mRNA. Understanding how RPP29 binds to M1GS RNA and enhances the enzyme's catalytic activity will provide great insight into developing more robust gene-targeting ribozymes for in vivo application. In this chapter, we describe the methods of using Fe(II)-ethylenediaminetetraacetic acid (EDTA) cleavage and nuclease footprint analyses to determine the regions of a M1GS ribozyme that are in proximity to RPP29 protein.


Assuntos
RNA Catalítico , Ribonuclease P , Animais , Humanos , Ribonuclease P/genética , Ribonuclease P/metabolismo , RNA Catalítico/metabolismo , Ácido Edético , Subunidades Proteicas/metabolismo , RNA/química , RNA Mensageiro/genética , Escherichia coli/metabolismo , Endonucleases/metabolismo
4.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110852

RESUMO

Kaposi's sarcoma, an AIDS-defining illness, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus. In this study, we engineered ribozymes derived from ribonuclease P (RNase P) catalytic RNA with targeting against the mRNA encoding KSHV immediate early replication and transcription activator (RTA), which is vital for KSHV gene expression. The functional ribozyme F-RTA efficiently sliced the RTA mRNA sequence in vitro. In cells, KSHV production was suppressed with ribozyme F-RTA expression by 250-fold, and RTA expression was suppressed by 92-94%. In contrast, expression of control ribozymes hardly affected RTA expression or viral production. Further studies revealed both overall KSHV early and late gene expression and viral growth decreased because of F-RTA-facilitated suppression of RTA expression. Our results indicate the first instance of RNase P ribozymes having potential for use in anti-KSHV therapy.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , RNA Catalítico , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Ribonuclease P/genética , Ribonuclease P/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Replicação Viral/genética , Latência Viral , Transativadores/genética , RNA Mensageiro/genética , Expressão Gênica , Regulação Viral da Expressão Gênica
5.
Microorganisms ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36985227

RESUMO

Hepatitis B virus (HBV), an international public health concern, is a leading viral cause of liver disease, such as hepatocellular carcinoma. Sequence-specific ribozymes derived from ribonuclease P (RNase P) catalytic RNA are being explored for gene targeting applications. In this study, we engineered an active RNase P ribozyme, M1-S-A, targeting the overlapping region of HBV S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA), all deemed essential for viral infection. Ribozyme M1-S-A cleaved the S mRNA sequence efficiently in vitro. We studied the effect of RNase P ribozyme on HBV gene expression and replication using the human hepatocyte HepG2.2.15 culture model that harbors an HBV genome and supports HBV replication. In these cultured cells, the expression of M1-S-A resulted in a reduction of more than 80% in both HBV RNA and protein levels and an inhibition of about 300-fold in the capsid-associated HBV DNA levels when compared to the cells that did not express any ribozymes. In control experiments, cells expressing an inactive control ribozyme displayed little impact on HBV RNA and protein levels, and on capsid-associated viral DNA levels. Our study signifies that RNase P ribozyme can suppress HBV gene expression and replication, implying the promise of RNase P ribozymes for anti-HBV therapy.

6.
RNA ; 29(3): 300-307, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549864

RESUMO

The seminal discovery of ribonuclease P (RNase P) and its catalytic RNA by Sidney Altman has not only revolutionized our understanding of life, but also opened new fields for scientific exploration and investigation. This review focuses on human RNase P and its use as a gene-targeting tool, two topics initiated in Altman's laboratory. We outline early works on human RNase P as a tRNA processing enzyme and comment on its expanding nonconventional functions in molecular networks of transcription, chromatin remodeling, homology-directed repair, and innate immunity. The important implications and insights from these discoveries on the potential use of RNase P as a gene-targeting tool are presented. This multifunctionality calls to a modified structure-function partitioning of domains in human RNase P, as well as its relative ribonucleoprotein, RNase MRP. The role of these two catalysts in innate immunity is of particular interest in molecular evolution, as this dynamic molecular network could have originated and evolved from primordial enzymes and sensors of RNA, including predecessors of these two ribonucleoproteins.


Assuntos
RNA Catalítico , Ribonuclease P , Humanos , Ribonuclease P/genética , Ribonuclease P/metabolismo , RNA/genética , Processamento Pós-Transcricional do RNA , RNA Catalítico/metabolismo
8.
Viruses ; 13(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671590

RESUMO

Herpes simplex virus 1 (HSV-1) is a herpesvirus that may cause cold sores or keratitis in healthy or immunocompetent individuals, but can lead to severe and potentially life-threatening complications in immune-immature individuals, such as neonates or immune-compromised patients. Like all other herpesviruses, HSV-1 can engage in lytic infection as well as establish latent infection. Current anti-HSV-1 therapies effectively block viral replication and infection. However, they have little effect on viral latency and cannot completely eliminate viral infection. These issues, along with the emergence of drug-resistant viral strains, pose a need to develop new compounds and novel strategies for the treatment of HSV-1 infection. Genome editing methods represent a promising approach against viral infection by modifying or destroying the genetic material of human viruses. These editing methods include homing endonucleases (HE) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein (Cas) RNA-guided nuclease system. Recent studies have showed that both HE and CRISPR/Cas systems are effective in inhibiting HSV-1 infection in cultured cells in vitro and in mice in vivo. This review, which focuses on recently published progress, suggests that genome editing approaches could be used for eliminating HSV-1 latent and lytic infection and for treating HSV-1 associated diseases.


Assuntos
Edição de Genes/métodos , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Viral , Herpesvirus Humano 1/fisiologia , Humanos
9.
PLoS Pathog ; 15(2): e1007615, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779794

RESUMO

Cytomegalovirus (CMV) infection causes birth defects and life-threatening complications in immunosuppressed patients. Lack of vaccine and need for more effective drugs have driven widespread ongoing therapeutic development efforts against human CMV (HCMV), mostly using murine CMV (MCMV) as the model system for preclinical animal tests. The recent publication (Yu et al., 2017, DOI: 10.1126/science.aam6892) of an atomic model for HCMV capsid with associated tegument protein pp150 has infused impetus for rational design of novel vaccines and drugs, but the absence of high-resolution structural data on MCMV remains a significant knowledge gap in such development efforts. Here, by cryoEM with sub-particle reconstruction method, we have obtained the first atomic structure of MCMV capsid with associated pp150. Surprisingly, the capsid-binding patterns of pp150 differ between HCMV and MCMV despite their highly similar capsid structures. In MCMV, pp150 is absent on triplex Tc and exists as a "Λ"-shaped dimer on other triplexes, leading to only 260 groups of two pp150 subunits per capsid in contrast to 320 groups of three pp150 subunits each in a "Δ"-shaped fortifying configuration. Many more amino acids contribute to pp150-pp150 interactions in MCMV than in HCMV, making MCMV pp150 dimer inflexible thus incompatible to instigate triplex Tc-binding as observed in HCMV. While pp150 is essential in HCMV, our pp150-deletion mutant of MCMV remained viable though with attenuated infectivity and exhibiting defects in retaining viral genome. These results thus invalidate targeting pp150, but lend support to targeting capsid proteins, when using MCMV as a model for HCMV pathogenesis and therapeutic studies.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/fisiologia , Animais , Capsídeo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/metabolismo , Genoma Viral/genética , Humanos , Camundongos , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidade , Fosfoproteínas/ultraestrutura , Deleção de Sequência/genética , Proteínas da Matriz Viral/ultraestrutura , Vírion , Montagem de Vírus
10.
RNA ; 25(5): 645-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30803999

RESUMO

External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.


Assuntos
Proteínas do Capsídeo/genética , Citomegalovirus/genética , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA de Transferência de Serina/genética , RNA Viral/genética , Ribonuclease P/metabolismo , Pareamento de Bases , Proteínas do Capsídeo/biossíntese , Linhagem Celular Transformada , Linhagem Celular Tumoral , Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Marcação de Genes/métodos , Engenharia Genética/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Terapia de Alvo Molecular , Neuroglia/metabolismo , Neuroglia/virologia , Conformação de Ácido Nucleico , Cultura Primária de Células , Clivagem do RNA , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Replicação Viral/fisiologia
11.
Talanta ; 195: 566-572, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625584

RESUMO

Alkaline phosphatase (ALP) is a vital hydrolysis enzyme in phosphate metabolism, which catalyzes the hydrolysis of phosphate ester groups in proteins, nucleic acids, and other small molecules. Meanwhile, abnormal ALP expression is associated with occurrence and development of many diseases. Terminal deoxynucleotidyl transferase (TdT) is a widely used tool enzyme in many fields, which randomly adds deoxyribonucleoside triphosphates (dNTPs) at the 3'-OH termini of ssDNA in a template-free manner. In this work, we designed a versatile, convenient, label-free, and highly sensitive fluorescence enhancing assay for ALP activity detection based on the characteristics of ALP, TdT, and thymine-HgII-thymine (T-Hg2+-T) structure. In the presence of ALP, the 3'-phosphoryl end of the ssDNA-p was hydrolyzed to hydroxyl group, followed by addition of a poly-T tail on its 3' terminal hydroxyl in the mixing solution containing both TdT and dTTPs. Then, the DNA with poly-T tail could interact with Hg2+ to form the stable T-Hg2+-T mediated metallo DNA duplex, which enhanced the fluorescence intensity of the SG. Under optimal conditions, the proposed system was employed for quantitatively monitoring ALP activity with a dynamic range of 0-2500 mU mL-1, and the actual detection limit could be down to 0.025 mU mL-1. And the determination of ALP activity in human serum samples and MCF-7 cells lysates exhibited a good sensing performance, demonstrating its potential applications in biochemical research and clinical diagnosis. Meanwhile, this system could also be applied to both TdT and Hg2+ detection.

12.
Anal Biochem ; 567: 85-89, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30157446

RESUMO

Terminal deoxynucleotidyl transferase (TdT) is a unique template-free polymerase that randomly adds multiple deoxyribonucleoside triphosphates (dNTPs) to the 3'-OH terminus of ssDNA. This characteristic makes TdT a versatile enzymatic tool in many fields. Moreover, aberrant TdT expression is a well-recognized biomarker of several leukemic diseases and is related to carcinogenesis. In this study, we developed a facile, rapid, label-free, and convenient assay for TdT detection. TdT-generated poly A tails formed a fluorescent enhancement complex in the presence of coralyne. To achieve a better signal-to-noise ratio, we used potassium thiocyanate (KSCN), instead of other halogen anions (KCl, KBr, KI, NaI) as the quenching agent of dissociate coralyne. Our results demonstrate that this assay is extremely facile, rapid, and label-free; at levels as low as 0.025 U/mL, TdT was distinctly detected within 55 min. And the determination of TdT activity in RBL-2H3 and Reh cells lysates exhibited a good sensing performance, demonstrating its potential applications in biochemical research and clinical diagnosis.


Assuntos
Adenosina/química , Alcaloides de Berberina/química , Técnicas Biossensoriais/métodos , DNA Nucleotidilexotransferase/análise , Polímeros/química , DNA Nucleotidilexotransferase/metabolismo , DNA de Cadeia Simples/química , Corantes Fluorescentes/química
13.
Chemistry ; 25(6): 1446-1450, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30479034

RESUMO

This work demonstrates single-molecule imaging of metal-ion induced double-stranded DNA formation in DNA nanostructures. The formation of the metal ion-mediated base pairing in a DNA origami frame was examined using C-Ag-C and T-Hg-T metallo-base pairs. The target DNA strands containing consecutive C or T were incorporated into the DNA frame, and the binding was controlled by the addition of metal ions. Double-stranded DNA formation was monitored by observing the structural changes in the incorporated DNA strands using high-speed atomic force microscopy (AFM). Using the T-Hg-T base pair, the dynamic formation of unique dsDNA and its dissociation were observed. The formation of an unusual shape of dsDNA with consecutive T-Hg-T base pairs was visualized in the designed nanoscale structure.


Assuntos
DNA/química , Metais/química , Nanoestruturas/química , Pareamento de Bases , DNA/metabolismo , Íons/química , Microscopia de Força Atômica , Nanotecnologia
14.
FASEB J ; 33(3): 4287-4299, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30571312

RESUMO

Antiviral drug development against respiratory syncytial virus (RSV) is urgently needed due to the public health significance of the viral infection. Here, we report the anti-RSV activity of a small molecule, (1S,3R,4R,5R)-3,4- bis{[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,5-dihydroxycyclohexane-1-carboxylic methyl ester (3,4-DCQAME) or 3,4- O-Dicaffeoylquinic acid methyl ester, which can be isolated from several plants of traditional Chinese medicine. We showed for the first time that compound 3,4-DCQAME potently inhibits RSV entry and infection. In vitro, 3,4-DCQAME can interact with F(ecto), the ectodomain of RSV fusion (F) protein. In cultured cells, the compound can block the interaction of F(ecto) protein with the cellular membrane and inhibit viral fusion during RSV entry, leading to inhibition of viral gene expression and infection. In RSV-infected mice that were treated with 3,4-DCQAME, we observed a reduction of RSV-induced pathologic changes and substantial inhibition of viral infection and growth in the lung tissues. Our results provide the first direct evidence of the anti-RSV activity of 3,4-DCQAME. Furthermore, these results suggest that 3,4-DCQAME represents a promising lead compound for anti-RSV therapeutic development.-Tang, W., Li, M., Liu, Y., Liang, N., Yang, Z., Zhao, Y., Wu, S., Lu, S., Li, Y., Liu, F. Small molecule inhibits respiratory syncytial virus entry and infection by blocking the interaction of the viral fusion protein with the cell membrane.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais de Fusão/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Expressão Gênica/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia
15.
Theranostics ; 8(20): 5634-5644, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555569

RESUMO

Rationales: Gene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an in vitro selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals. Methods and Results: In this report, R388-AS, a new engineered ribozyme variant, was designed to target the mRNA of assemblin (AS) of murine cytomegalovirus (MCMV), which is essential for viral progeny production. Variant R338-AS cleaved AS mRNA sequence in vitro at least 200 times more efficiently than ribozyme M1-AS, which originated from the wild type RNase P catalytic RNA sequence. In cultured MCMV-infected cells, R338-AS exhibited better antiviral activity than M1-AS and decreased viral AS expression by 98-99% and virus production by 15,000 fold. In MCMV-infected mice, R388-AS was more active in inhibiting AS expression, blocking viral replication, and improving animal survival than M1-AS. Conclusions: Our results provide the first direct evidence that novel engineered RNase P ribozyme variants with more active catalytic activity in vitro are also more effective in inhibiting viral gene expression in animals. Moreover, our studies imply the potential of engineering novel RNase P ribozyme variants with unique mutations to improve ribozyme activity for therapeutic application.


Assuntos
Terapia Genética/métodos , Muromegalovirus/efeitos dos fármacos , Muromegalovirus/patogenicidade , RNA Catalítico/genética , Ribonuclease P/metabolismo , Animais , Citomegalovirus/genética , Camundongos , RNA Antissenso/genética , RNA Mensageiro/genética
16.
Autophagy ; 14(9): 1629-1643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940800

RESUMO

Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disease with severe inflammatory symptoms in the axial skeleton. The cause of ankylosing spondylitis is unknown. TNFAIP3, also named A20, uses ubiquitin-related functions to regulate immune activation, deficiency of which is highly related to autoimmune disease. However, the role of TNFAIP3 in human AS has not been reported. Our objective was to study the role and mechanism of TNFAIP3 in ankylosing spondylitis. TNFAIP3 expression on different types of immunocytes from AS peripheral blood was measured by flow cytometry. In vitro, monocytes were transfected with a TNFAIP3 shRNA lentivirus, and IL6 and IL1B activation was tested using real-time PCR and ELISA. The novel interaction complex TNFAIP3-DEPTOR was determined through GST pull-down, yeast two-hybrid system, confocal microscopy, and co-immunoprecipitation. Transmission electron microscopy, the RFP-GFP-LC3 adenovirus, and LC3 expression were used for autophagy detection. Here, we show that TNFAIP3 expression in AS peripheral blood non-classical monocytes was decreased. In normal monocytes, TNFAIP3 induced autophagy, which restricted inflammasome activation to the early stage of LPS stimulation. Zinc-finger domains of TNFAIP3 were able to interact and stabilize DEPTOR. TNFAIP3 and DEPTOR together rapidly promoted autophagy after LPS treatment to prevent NLRP3 inflammasome formation. Finally, TNFAIP3 and DEPTOR deficiency in AS non-classical monocytes facilitated inflammasome activation. Our study indicates that TNFAIP3-DEPTOR complex-induced early-onset autophagy is vital for immune inhibition in autoimmune disease.


Assuntos
Autofagia , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Monócitos/metabolismo , Espondilite Anquilosante/metabolismo , Espondilite Anquilosante/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Linfócitos B/metabolismo , Células HEK293 , Humanos , Inflamassomos/ultraestrutura , Interleucina-1beta/sangue , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/ultraestrutura , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais , Espondilite Anquilosante/sangue , Linfócitos T/metabolismo
17.
Viruses ; 10(6)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844277

RESUMO

The CRISPR/Cas9 system has been applied in the genome editing and disruption of latent infections for herpesviruses such as the herpes simplex virus, Epstein⁻Barr virus, cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus. CRISPR/Cas9-directed mutagenesis can introduce similar types of mutations to the viral genome as can bacterial artificial chromosome recombination engineering, which maintains and reconstitutes the viral genome successfully. The cleavage mediated by CRISPR/Cas9 enables the manipulation of disease-associated viral strains with unprecedented efficiency and precision. Additionally, current therapies for herpesvirus productive and latent infections are limited in efficacy and cannot eradicate viruses. CRISPR/Cas9 is potentially adapted for antiviral treatment by specifically targeting viral genomes during latent infections. This review, which focuses on recently published progress, suggests that the CRISPR/Cas9 system is not only a useful tool for basic virology research, but also a promising strategy for the control and prevention of herpesvirus latent infections.


Assuntos
Sistemas CRISPR-Cas , Genoma Viral , Infecções por Herpesviridae/terapia , Herpesviridae/genética , Animais , Citomegalovirus/genética , Edição de Genes , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Camundongos , Mutagênese , Simplexvirus/genética , Latência Viral
18.
Nat Microbiol ; 3(4): 503-513, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29588542

RESUMO

The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity. Cell sorting of peripheral blood from latently infected human donors confirms that only this monocyte subset, representing less than 0.1% of peripheral mononuclear cells, is HCMV genome-positive but immediate-early-negative. Mechanistic studies demonstrate that HCMV promotes the differentiation of HPCs into this monocyte subset by activating cellular signal transducer and activator of transcription 3 (STAT3). In turn, this monocyte subset generates a high level of nitric oxide (NO) to silence HCMV immediate-early transcription and promote viral latency. By contrast, the US28-knockout HCMV mutant, which is incapable of activating STAT3, fails to reprogramme the HPCs and achieve latency. Our findings reveal that via activating the STAT3-iNOS-NO axis, HCMV differentiates human HPCs into a longevous, immunosuppressive monocyte subset for viral latency.


Assuntos
Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica/genética , Monócitos/virologia , Latência Viral/imunologia , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Citomegalovirus/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Tolerância Imunológica/imunologia , Interleucina-10/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT3/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Latência Viral/genética
19.
Cell Res ; 28(2): 157-171, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29327729

RESUMO

Infection of H5N1 influenza virus causes the highest mortality among all influenza viruses. The mechanisms underlying such high viral pathogenicity are incompletely understood. Here, we report that the H5N1 influenza virus encodes a microRNA-like small RNA, miR-HA-3p, which is processed from a stem loop-containing viral RNA precursor by Argonaute 2, and plays a role in enhancing cytokine production during H5N1 infection. Mechanistic study shows that miR-HA-3p targets poly(rC)-binding protein 2 (PCBP2) and suppresses its expression. Consistent with PCBP2 being an important negative regulator of RIG-I/MAVS-mediated antiviral innate immunity, suppression of PCBP2 expression by miR-HA-3p promotes cytokine production in human macrophages and mice infected with H5N1 virus. We conclude that miR-HA-3p is the first identified influenza virus-encoded microRNA-like functional RNA fragment and a novel virulence factor contributing to H5N1-induced 'cytokine storm' and mortality.


Assuntos
Citocinas/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/genética , Influenza Humana/imunologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Antagomirs/metabolismo , Antagomirs/farmacologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , RNA Viral/genética , Fatores de Virulência
20.
PLoS Pathog ; 14(1): e1006867, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377960

RESUMO

Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulated genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects.


Assuntos
Citomegalovirus/fisiologia , Evasão da Resposta Imune , Imunidade Inata/efeitos dos fármacos , Interferon gama/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas da Matriz Viral/fisiologia , Células Cultivadas , Citomegalovirus/imunologia , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...