Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 4099-4107, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189255

RESUMO

To address the toxicity and stability issues of traditional lead halide perovskite solar cells (PSCs), the development of lead-free PSCs, such as Cs2AgBiBr6 solar cells, is of great significance. However, due to the low defect formation energy of Cs2AgBiBr6, a large number of vacancies, including A-site vacancies and X-site vacancies, form during the fabrication process of the Cs2AgBiBr6 film, which seriously damage the performance of the devices. The traditional phenylethylammonium (PEA) cation, mainly focusing on passivating A-site vacancies, is incapable of reducing X-site vacancies and so results in a limited performance improvement in Cs2AgBiBr6 solar cells. Herein, inspired by the capability of the Lewis base to coordinate with metal cations, a series of N-heterocyclic amines are introduced to serve as a dual-site passivator, reducing A-site and X-site vacancies at the same time. The highest power conversion efficiency of modified Cs2AgBiBr6 solar cells has been increased 36% from 1.10 to 1.50%. Further investigation reveals that the higher electron density of additives would lead to a stronger interaction with metal cations like Ag+ and Bi3+, thus reducing more X-site defects and improving carrier dynamics. Our work provides a strategy for passivating perovskite with various kinds of defects and reveals the connection between the coordination capability of additives and device performance enhancement, which could be instructive in improving the performance of lead-free PSCs.

2.
ACS Appl Mater Interfaces ; 15(30): 36716-36723, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477401

RESUMO

Tin-based perovskites comprise one of the preferred nontoxic alternatives to Pb-based perovskites due to their desirable optoelectronic properties. However, there remains a crucial stability problem due to the property of Sn2+ oxidation. In this study, we reported stable tin-based perovskite nanocrystals (NCs) using stannous acetate as the Sn2+ source because of its stronger Sn-O bonding. To prevent the oxidation of Sn2+, a thin layer of CsBr coverage was formed in situ; tin-based perovskite NCs, CsxSnBrx+2@CsBr (1 < x < 4), show a high photoluminescence quantum yield (PLQY) of 78.2% and high stability. The measured lifetime of PLQY decrease to half of the initial value is ∼1287 h under ambient conditions and ∼2200 h under a nitrogen atmosphere, respectively. Furthermore, the as-fabricated light-emitting diodes based on CsxSnBrx+2@CsBr NCs as the emitting layer exhibit a maximum luminescence of 16 cd/m2 and an external quantum efficiency of 0.035% with peaks at 451 and 615 nm, corresponding to the emissions of CsBr and CsxSnBrx+2, respectively. This work provided a new way to obtain stable Sn-based perovskite NCs and exhibited their potential for application in white light-emitting diodes (LEDs).

3.
ACS Appl Mater Interfaces ; 13(3): 4553-4559, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33430594

RESUMO

Although the power conversion efficiency of perovskite solar cells has reached 25.5%, their long-term stability is still a barrier to commercialization. In this work, 1-methyl-3-(3',3',4',4',4'-pentafluorobutyl)imidazolium tetrafluoroborate (MFIM-2) ionic liquid and another two analogues were used as additives to study their interaction mechanism with the FAPbI3 perovskite layer. The results reveal that MFIM-2 suppressed the formation of PbI2 crystals during crystallization, enlarged the grain size, and reduced the defect density, which led to an increased photovoltage of 1.12 V and efficiency of 19.4%. Furthermore, the moisture stability of the solar cell devices was also improved. Devices with MFIM-2 retained above 83% of the original value after 35 days in an atmosphere with about 25% relative humidity, and the perovskite film with MFIM-2 showed no phase transition in a 10 month aging process. These results demonstrate that the additive strategy of the polyfluoroalkylated imidazolium salt is a promising way for simultaneously extending the lifetime and improving the device performance of the perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...