Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 23(3): 668-675, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33471538

RESUMO

A highly efficient catalytic system based on the cheap transition metal nickel for the asymmetric hydrogenation of challenging cyclic alkenyl sulfones, 3-substituted benzo[b]thiophene 1,1-dioxides, was first successfully developed. A series of hydrogenation products, chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxides, were obtained in high yields (95-99%) with excellent enantioselectivities (90-99% ee). According to the results of nonlinear effect studies, deuterium-labeling experiments, and DFT calculation investigations, a reasonable catalytic mechanism for this nickel-catalyzed asymmetric hydrogenation was provided, which displayed that the two added hydrogen atoms of the hydrogenation products could be from H2 through the insertion of Ni-H and subsequent hydrogenolysis.

2.
Chem Commun (Camb) ; 56(36): 4934-4937, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239044

RESUMO

Highly efficient Ni-catalyzed asymmetric hydrogenation of cyclic N-sulfonyl ketimino esters was, for the first time, successfully developed, providing various chiral α-monosubstituted α-amino acid derivatives with excellent results (97-99% yields, 90 to >99% ee). Cyclic N-sulfonyl ketimines were also hydrogenated well to afford chiral amine derivatives with 98-99% yields and 97 to >99% ee. The gram-scale asymmetric hydrogenation was performed well with 85% yield and 99% ee using only 0.2 mol% catalyst.

3.
Chem Sci ; 10(8): 2507-2512, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881681

RESUMO

Rh-catalyzed asymmetric hydrogenation of prochiral substituted benzo[b]thiophene 1,1-dioxides was successfully developed, affording various chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxides with high yields and excellent enantioselectivities (up to 99% yield and >99% ee). In particular, for challenging substrates, such as aryl substituted substrates with sterically hindered groups and alkyl substituted substrates, the reaction proceeded smoothly in our catalytic system with excellent results. The gram-scale asymmetric hydrogenation proceeded well with 99% yield and 99% ee in the presence of 0.02 mol% (S/C = 5000) catalyst loading. The possible hydrogen-bonding interaction between the substrate and the ligand may play an important role in achieving high reactivity and excellent enantioselectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA