Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Artif Organs ; 47(4): 269-279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506302

RESUMO

Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons.


Assuntos
Coração Auxiliar , Estresse Mecânico , Trombose , Trombose/etiologia , Trombose/fisiopatologia , Trombose/sangue , Humanos , Coração Auxiliar/efeitos adversos , Ativação Plaquetária , Modelos Cardiovasculares , Difosfato de Adenosina/metabolismo , Desenho de Prótese , Oxigenação por Membrana Extracorpórea/efeitos adversos , Fatores de Risco , Plaquetas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37724774

RESUMO

Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions via numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.

3.
Int J Artif Organs ; 46(4): 215-225, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36941753

RESUMO

BACKGROUND: Cardiac functions and support modes of left ventricular assist device (LVAD) will influence the pump inner flow field and blood damage potential. METHODS: Computational fluid dynamics (CFD) method and lumped-parameter-model (LPM) were applied to investigate the impacts of cardiac functions under full (9000 rpm) and partial (8000 rpm) support modes in an axial pump. RESULTS: The constitution of hemolysis index (HI) in different components of the pump was investigated. HI was found to be more sensitive to positive incidence angles (i) compared with negative incidence angles in rotors. Negative incidence angles had little impact on HI both in rotors and the outlet guide vanes. The improved cardiac function made only a minor difference in HIave (estimated average HI in one cardiac cycle) by 9.88%, as the flow rate expanded mainly to higher flow range. Switching to partial support mode, however, would induce a periodic experience of severe flow separation and recirculation at low flow range. This irregular flow field increased HIave by 47.97%, remarkably increasing the blood damage potential. CONCLUSION: This study revealed the relationship between the blade incidence angle i and HI, and recommended negative-incidence-angle blade designs as it yielded lower HI. Moreover, to avoid flow range below 50% of the design point, careful evaluations should be made before switching support modes as weaning procedures in clinical applications.


Assuntos
Coração Auxiliar , Modelos Cardiovasculares , Humanos , Simulação por Computador , Coração Auxiliar/efeitos adversos , Hidrodinâmica , Hemólise
4.
Artif Organs ; 46(11): 2159-2170, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35735995

RESUMO

BACKGROUND: Speed modulation of blood pumps has been proved to help restore vascular pulsatility and implemented clinically during treatment for cardiac failure. However, its effect on blood trauma has not been studied thoroughly. METHODS: In this paper, we study the flow field of an axial pump FW-X under the modes of co-pulse, counter pulse, and constant speed to evaluate the blood trauma. Based on the coupling model of cardiovascular systems and axial blood pump, aortic pressure and the pump flow were obtained and applied as the boundary conditions at the pump outlet and inlet. The level of shear stress and hemolysis index were derived from computational fluid dynamics (CFD) simulation. RESULTS: Results showed that the constant speed mode had the lowest shear stress level and hemolytic index at the expense of diminished pulsatility. Compared with the constant speed mode, the hemolysis index of co-pulse and counter pulse mode was higher, but it was helpful to restore vascular pulsatility. CONCLUSIONS: This method can be easily incorporated in the in vitro testing phase to analyze and decrease a pump's trauma before animal experimentation, thereby reducing the cost of blood pump development.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Animais , Coração Auxiliar/efeitos adversos , Hemólise , Hemodinâmica , Hidrodinâmica , Simulação por Computador , Modelos Cardiovasculares
5.
Int J Artif Organs ; 44(10): 773-782, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382479

RESUMO

The intraventricular blood flow changed by blood pump flow dynamics may correlate with thrombosis and ventricular suction. The flow velocity, distribution of streamlines, vorticity, and standard deviation of velocity inside a left ventricle failing to different extents throughout the cardiac cycle when supported by an axial blood pump were measured by particle image velocimetry (PIV) in this study. The results show slower and static flow velocities existed in the central region of the left ventricle near the mitral valve and aortic valve and that were not sensitive to left ventricular (LV) failure degree or LV pressure. Strong vorticity located near the inner LV wall around the LV apex and the blood pump inlet was not sensitive to LV failure degree or LV pressure. Higher standard deviation of the blood velocity at the blood pump inlet decreased with increasing LV failure degree, whereas the standard deviation of the velocity near the atrium increased with increasing intraventricular pressure. The experimental results demonstrated that the risk of thrombosis inside the failing left ventricle is not related to heart failure degree. The "washout" performance of the strong vorticity near the inner LV wall could reduce the thrombotic potential inside the left ventricle and was not related to heart failure degree. The vorticity near the aortic valve was sensitive to LV failure degree but not to LV pressure. We concluded that the risk of blood damage caused by adverse flow inside the left ventricle decreased with increasing LV pressure.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Valva Aórtica , Velocidade do Fluxo Sanguíneo , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Modelos Cardiovasculares
6.
Int J Artif Organs ; 44(12): 980-989, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33908310

RESUMO

Blood flow inside the left ventricle (LV) is a concern for blood pump use and contributes to ventricle suction and thromboembolic events. However, few studies have examined blood flow inside the LV after a blood pump was implanted. In this study, in vitro experiments were conducted to emulate the intraventricular blood flow, such as blood flow velocity, the distribution of streamlines, vorticity and the standard deviation of velocity inside the LV during axial blood pump support. A silicone LV reconstructed from computerized tomography (CT) data of a heart failure patient was incorporated into a mock circulatory loop (MCL) to simulate human systemic circulation. Then, the blood flow inside the ventricle was examined by particle image velocimetry (PIV) equipment. The results showed that the operating conditions of the axial blood pump influenced flow patterns within the LV and areas of potential blood stasis, and the intraventricular swirling flow was altered with blood pump support. The presence of vorticity in the LV from the thoracic aorta to the heart apex can provide thorough washing of the LV cavity. The gradually extending stasis region in the central LV with increasing blood pump support is necessary to reduce the thrombosis potential in the LV.


Assuntos
Coração Auxiliar , Velocidade do Fluxo Sanguíneo , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Modelos Cardiovasculares
7.
Int J Artif Organs ; 44(7): 471-480, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33258722

RESUMO

Thrombosis and its related events have become a major concern during the development and optimization of ventricular assist devices (VADs, also called blood pumps), and limit their clinical use and economic benefits. Attempts have been made to model the thrombosis formation, considering hemodynamic and biochemical processes. However, the complexities and computational expenses are prohibitive. Blood stasis is one of the key factors which may lead to the formation of thrombosis and excessive thromboembolic risks for patients. This study proposed a novel approach for modeling blood stasis, based on a two-phase flow principle. The locations of blood residual can be tracked over time, so that regions of blood stasis can be identified. The blood stasis in an axial blood pump is simulated under various working conditions, the results agree well with the experimental results. In contrast, conventional hemodynamic metrics such as velocity, time-averaged wall shear stress (TAWSS), and relative residence time (RRT), were contradictory in judging risk of blood stasis and thrombosis, and inconsistent with experimental results. We also found that the pump operating at the designed rotational speed is less prone to blood stasis. The model provides an efficient and fast alternative for evaluating blood stasis and thrombosis potential in blood pumps, and will be a valuable addition to the tools to support the design and improvement of VADs.


Assuntos
Coração Auxiliar , Trombose , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Coração Auxiliar/efeitos adversos , Hemodinâmica , Humanos , Modelos Cardiovasculares , Estresse Mecânico , Trombose/diagnóstico , Trombose/etiologia
8.
Artif Organs ; 45(2): 143-150, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32812671

RESUMO

Intraventricular blood stasis is a design consideration for continuous flow blood pumps and might contribute to adverse events such as thrombosis and ventricular suction. However, the blood flow inside left ventricles (LVs) supported by blood pumps is still unclear. In vitro experiments were conducted to imitate how the hydraulic performance of an axial blood pump affects the intraventricular blood flow of a severe heart failure patient, such as velocity distribution, vorticity, and standard deviation of velocity. In this study, a silicone model of the LV was constructed from the computed tomography data of one patient with heart failure and was 3D printed. Then, intraventricular flow was visualized by particle image velocimetry equipment within a mock circulation loop. The results showed that the axial blood pump suctions most of the blood in a severely failing LV, there was an altered flow status within the LV, and blood stasis appeared in the central region of the LV. Some blood may be suctioned from the aortic valve to the blood pump because the patient's native heart was severely failing. Blood stasis at the LV center may cause thrombosis in the LV. The vortex flow near the inner wall of the LV can thoroughly wash the left ventricular cavity.


Assuntos
Desenho de Equipamento/métodos , Insuficiência Cardíaca/cirurgia , Ventrículos do Coração/diagnóstico por imagem , Modelos Anatômicos , Impressão Tridimensional , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Ventrículos do Coração/fisiopatologia , Coração Auxiliar , Hemodinâmica , Humanos , Modelos Cardiovasculares , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
9.
Artif Organs ; 44(5): 465-472, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31853998

RESUMO

Pump thrombosis potential exists in most blood pumps and limits their clinical use. To improve the pump thrombosis performance of blood pumps, a method for emulating the platelet deposition on the flow passage component surfaces inside blood pumps was presented and tested. The method emulates the blood platelet deposition, employing laser-induced fluorescence tracing technology. The blood pump was rotated in a mock circulation loop with deionized water filled with fluorescent particles. The component surfaces were then explored via laser. The fluorescent particles were induced by laser and imaged in a charge-coupled device (CCD) camera to show the distribution of fluorescent particles gathering on the blood pump component surfaces. The activated platelet deposition was emulated by fluorescent particle gathering. The experiment showed obvious particle gathering on the interface surfaces and cross-sectional surface (perpendicular to the flow). This platelet deposition estimation (PDE) method can be easily incorporated in the in vitro testing phase to analyze and decrease a pump's thrombosis potential before animal experimentation, thereby reducing the cost of blood pump development. This methodology of emulating blood platelet deposition indicates its potential for improving flow passage component structure and reducing device thrombosis of blood pumps.


Assuntos
Plaquetas , Coração Auxiliar/efeitos adversos , Trombose/etiologia , Humanos , Estresse Mecânico
10.
Int J Artif Organs ; 43(4): 252-257, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31709882

RESUMO

Device thrombosis inside ventricular assist devices remains a limitation to their long-term clinical use. Thrombosis potential exists in almost all ventricular assist devices because the device-induced high shear stress and vortices can activate platelets, which then aggregate and adhere to the surfaces inside the ventricular assist device. To decrease the device thrombosis potential of long-term use of ventricular assist devices, a methodology entitled platelet adhesion emulation for predicting the thrombosis potential and thrombosis position inside the ventricular assist devices is developed. The platelet adhesion emulation methodology combines numerical simulations with in vitro experiments by correlating the structure of the flow passage components within the ventricular assist device with the platelet adhesion to estimate the thrombosis potential and location, with the goal of developing ventricular assist devices with optimized antithrombotic performance. Platelet adhesion emulation is aimed at decreasing the device thrombus potential of ventricular assist devices. The platelet adhesion emulation effectiveness is validated by simulating and testing an axial left ventricular assist device. The blood velocity relative to the surfaces of the flow passage components is calculated to estimate the platelet adhesion potential, indicating the probability of thrombus formation on the surfaces. Platelet adhesion emulation experiments conducted in a mock circulation loop with pump prototypes show the distribution of platelet adhesion on the surfaces. This methodology of emulating the device thrombosis distribution indicates the potential for improving the component structure and reducing the device thrombosis of ventricular assist devices.


Assuntos
Coração Auxiliar/efeitos adversos , Adesividade Plaquetária/fisiologia , Trombose/etiologia , Plaquetas , Humanos , Modelos Cardiovasculares , Resistência ao Cisalhamento , Estresse Mecânico
11.
Anal Chem ; 91(18): 12006-12013, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31433623

RESUMO

The ratiometric method allows the measurement of ratio changes between two signals, which can reduce the detection signal fluctuations caused by distinct background conditions and greatly improve the reproducibility and reliability of detection. However, in contrast with the emerging dual excitation or dual emission dyes applied in ratiometric luminescence measurement, only a few internal reference probes have been exploited for ratiometric electrochemical detection. In this paper, a gold nanoparticles@carbonized resin nanospheres composite with thermally reduced graphene oxide as scaffold (AuNPs@CRS-TrGNO) has been fabricated, and the AuNPs embedded in the CRS were first used as an internal reference probe for ratiometric electrochemical detection. The detachment and aggregation of AuNPs is suppressed by embedding in the CRS, so its redox signal is very stable, which provides feasibility for ratiometric detection. Moreover, the embedment of AuNPs, carbonization of resin spheres, and hybridization with TrGNO all have played positive roles in improving the charge transfer rate, which leads to excellent electrochemical performance of the composite. Based on these characteristics of the AuNPs@CRS-TrGNO, a new ratiometric electrochemical detection platform was constructed, and copper ions (Cu2+) in simulated seawater were successfully detected. This ratiometric method has the advantages of simple design and convenient operation, and obviously it improves the reproducibility and reliability of the electrochemical sensor.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(3): 379-385, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31232539

RESUMO

An implantable axial blood pump was designed according to the circulation assist requirement of severe heart failure patients of China. The design point was chosen at 3 L/min flow rate with 100 mm Hg pressure rise when the blood pump can provide flow rates of 2-7 L/min. The blood pump with good hemolytic and anti-thrombogenic property at widely operating range was designed by developing a structure that including the spindly rotor impeller structure and the diffuser with splitter blades and cantilevered main blades. Numerical simulation and particle image velocimetry (PIV) experiment were conducted to analyze the hydraulic, flow fields and hemolytic performance of the blood pump. The results showed that the blood pump could provide flow rates of 2-7 L/min with pressure rise of 60.0-151.3 mm Hg when the blood pump rotating from 7 000 to 11 000 r/min. After adding the splitter blades, the separation flow at the suction surface of the diffuser has been reduced efficiently. The cantilever structure changed the blade gap from shroud to hub that reduced the tangential velocity from 6.2 m/s to 4.3-1.1 m/s in blade gap. Moreover, the maximum scalar shear stress of the blood pump was 897.3 Pa, and the averaged scalar shear stress was 37.7 Pa. The hemolysis index of the blood pump was 0.168% calculated with Heuser's hemolysis model. The PIV and simulated results showed the overall agreement of flow field distribution in diffuser region. The blood damage caused by higher shear stress would be reduced by adopting the spindle rotor impeller and diffuser with splitter blades and cantilevered main blades. The blood could flow smoothly through the axial blood pump with satisfactory hydraulics performance and without separation flow.


Assuntos
Desenho de Equipamento , Insuficiência Cardíaca/terapia , Coração Auxiliar , China , Simulação por Computador , Hemólise , Humanos , Modelos Cardiovasculares
13.
Int J Artif Organs ; 42(4): 182-189, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30630379

RESUMO

Adverse events caused by flow-induced thrombus formation around the bearing/shaft of an axial blood pump remain a serious problem for axial blood pumps. Moreover, excessive anticoagulation with thrombosis around the bearing potentially increases the risk of postoperative gastrointestinal bleeding. The purpose of this study is to analyze the influence of the bearing structure on the thrombosis potential of an axial blood pump. The bearing/shaft structure was embedded into an axial blood pump numerical model. The numerical simulation and analysis are focused on the low wall shear stresses, recirculation, and residence time close to the bearing region to evaluate the potential for thrombosis around the bearing. Then, the flow field near the blood pump bearing was tested via in vitro particle image velocimetry experiments to verify the numerical results. The simulation results showed that after embedding the bearing/shaft structure a recirculation zone appeared in the outlet guide vane bearing/shaft region, the residence time increased 11-fold in comparison to the pump without the bearing/shaft structure, the scalar shear stress in the shaft surface was less than 7.8 Pa, and the stress accumulation was less than 0.10 Pa s. The numerical results showed that platelets that flow through the bearing region are exposed to significantly lower wall shear stress and a longer residence time, leading to activated platelet adhesion. The reduced stress accumulation and increased time in the bearing region lead to increased platelet activation.


Assuntos
Plaquetas/fisiologia , Coração Auxiliar/efeitos adversos , Ativação Plaquetária , Trombose , Simulação por Computador , Humanos , Teste de Materiais , Modelos Cardiovasculares , Reologia/métodos , Resistência ao Cisalhamento , Estresse Mecânico , Trombose/etiologia , Trombose/prevenção & controle
14.
ASAIO J ; 65(1): 59-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309280

RESUMO

The gaps between the blades and the shroud (or hub) of an axial blood pump affect the hydraulics, efficiency, and hemolytic performance. These gaps are critical parameters when a blood pump is manufactured. To evaluate the influence of blade gaps on axial blood pump performance, the flow characteristics inside an axial blood pump with different radial blade gaps were numerically simulated and analyzed with special attention paid to the hydraulic characteristics, gap flow, hydraulic efficiency, and hemolysis index (HI). In vitro hydraulic testing and particle image velocimetry testing were conducted to verify the numerical results. The simulation results showed that the efficiency and pressure rise decreased when the gap increased. The efficiency of the axial blood pump at design point decreased from 37.1% to 27.1% and the pressure rise decreased from 127.4 to 71.2 mm Hg when the gap increased from 0.1 to 0.3 mm. Return and vortex flows were present in the outlet guide vane channels when the gap was larger than 0.2 mm. The HI of the blood pump with a 0.1 mm gap was 1.5-fold greater than that with a 0.3 mm gap. The results illustrated poor hydraulic characteristics when the gap was larger than 0.15 mm and rapidly deteriorated hemolysis when the gap was larger than 0.1 mm. The numerical and experimental results demonstrated that the pressure rise, pump efficiency, and scalar shear stress decreased when the gap increased. The HI did not strictly decrease with gap increases. The preliminary results encourage the improvement of axial blood pump designs.


Assuntos
Simulação por Computador , Coração Auxiliar , Modelos Cardiovasculares , Desenho de Equipamento , Humanos
15.
Biomed Res Int ; 2017: 4352450, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085838

RESUMO

This study attempted to establish miRNA expression profiles in acute myocardial infarct (AMI) sheep model with left ventricular assist device (LVAD) unloading. AMI was established in sheep model and FW-II type axial flow pump was implanted to maintain continuous unloading for 3 days. The cardiomyocyte survival, inflammatory cell infiltration, and myocardial fibrosis were detected by tissue staining, and cardiomyocyte apoptosis was detected by TUNEL assay. High throughput sequencing technique was used to detect miRNA expression in cardiomyocytes and to establish miRNA expression profile. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were established. miRNA sequencing results identified 152 known mature miRNAs and 1582 new mature miRNAs. The unloading and control groups differentially expressed genes, of which RT-PCR verified oar-miR-19b and oar-miR-26a. The GO and KEGG pathway annotation and enrichment established that the regulating functions and signaling pathways of these miRNAs were closely related to cardiovascular diseases (CVD). In this study, LVAD effectively reduced the cell death degree of cardiomyocyte in MI. The established miRNA expression profiles of AMI and LVAD intervention in this study suggest that the expression profile could be used to explore the unknown miRNA and the regulatory mechanisms involved in AMI.


Assuntos
Regulação da Expressão Gênica , Coração Auxiliar , MicroRNAs/biossíntese , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Infarto do Miocárdio/genética , Miócitos Cardíacos/patologia , Ovinos
16.
Int J Artif Organs ; 40(9): 489-497, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28777391

RESUMO

A fully implantable axial left ventricular assist device LAP31 was developed for Chinese or other heart failure patients who need partial support. Based on the 5-Lpm total cardiac blood output of Chinese without heart failure disease, the design point of LAP31 was set to a flow rate of 3 Lpm with 100-mmHg pressure head. To achieve the required pressure head and good hemolytic performance, a structure that includes a spindly rotor hub and a diffuser with splitter and cantilevered main blades was developed. Computational fluid dynamics (CFD) was used to analyze the hydraulic and hemodynamic performance of LAP31. Then in vitro hydraulics experiments were conducted. The numerical simulation results show that LAP31 could generate a 1 to 8 Lpm flow rate with a 60.9 to 182.7 mmHg pressure head when the pump was rotating between 9,000 and 12,000 rpm. The average scalar shear stress of the blood pump was 21.7 Pa, and the average exposure time was 71.0 milliseconds. The mean hemolysis index of LAP31 obtained using Heuser's hemolysis model and Giersiepen's model was 0.220% and 3.89 × 10-5% respectively. After adding the splitter blades, the flow separation at the suction surface of the diffuser was reduced. The cantilever structure reduced the tangential velocity from 6.1 to 4.7-1.4 m/s within the blade gap by changing the blade gap from shroud to hub. Subsequently, the blood damage caused by shear stress was reduced. In conclusion, the hydraulic and hemolytic characteristics of the LAP31 are acceptable for partial support.


Assuntos
Desenho de Equipamento , Coração Auxiliar , Insuficiência Cardíaca/cirurgia , Hemorreologia , Humanos , Modelos Cardiovasculares , Análise Numérica Assistida por Computador
17.
Med Sci Monit ; 23: 1655-1661, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379938

RESUMO

BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.


Assuntos
Desenho de Equipamento/instrumentação , Coração Auxiliar , Modelos Cardiovasculares , Trombose/prevenção & controle , Velocidade do Fluxo Sanguíneo/fisiologia , Cânula , Simulação por Computador , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Bombas de Infusão Implantáveis , Reologia/instrumentação , Reologia/métodos , Trombose/terapia
18.
ASAIO J ; 62(6): 657-665, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556144

RESUMO

The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.


Assuntos
Coração Auxiliar , Hemólise , Humanos , Resistência ao Cisalhamento
19.
Biomed Mater Eng ; 24(1): 117-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24211890

RESUMO

The properties of blood flow in the outflow cannula of an axial blood pump play a critical role in potential thrombus formation and vascular injury. In this study, an in vitro flow visualization technique using particle image velocimetry (PIV) was applied to investigate the flow characteristics in the outflow cannula of a FW-2 model axial pump. The two-dimensional (2-D) flow field in the axial central section and the three-dimensional (3-D) flow field in the whole outflow cannula were examined with the PIV system. Tests were carried out with a blood-mimic working fluid in the axial pump at a rotational speed of 8500 ± 20 rpm with a flow rate of 5 L/min. The velocity distribution in the outflow cannula was analyzed to evaluate the flow characteristics. There was no backflow or stagnant flow in the tested area, while the flow velocity rapidly increased outside the boundary layer. A spiral flow was observed near the boundary layer, but this was worn off within the tested area. Based on the results, hemolysis and thrombus formation in the cannula, and injury to aortic endothelium are unlikely to occur due to spiral flow.


Assuntos
Engenharia Biomédica , Velocidade do Fluxo Sanguíneo/fisiologia , Catéteres , Coração Auxiliar , Aorta/patologia , Calibragem , Endotélio Vascular/patologia , Desenho de Equipamento , Insuficiência Cardíaca/terapia , Hemólise , Humanos , Modelos Cardiovasculares , Reologia , Software , Trombose/patologia , Trombose/prevenção & controle , Viscosidade
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(1): 141-8, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23488155

RESUMO

The tip structure is one of the key factors to determine the performance of left ventricular assist device (LVAD) inflow cannulas. The tip structure influences the thrombosis, hemolysis in cannula and left ventricle and suction leading to obstruction in ventricle. We designed four kinds of inflow cannulas that had different tips and built the numerical models of the four historical used inflow cannulas inserted into the apex of left ventricle. We computed the hemodynamic characteristics of inflow cannulas insertion by Fluent software. We researched the backflow, turbulent flow and pressure distribution of the four inflow cannulas. The results showed that the trumpet tipped inflow cannula had smooth flow velocity distribution without backflow or low velocity flow. The trumpet tipped inflow cannula had the best blood compatibility characteristics. The trumpet structure could prevent obstruction. The caged tipped cannula had serious turbulent flow which could possibly cause thrombosis and the low pressure near left ventricle wall and easily lead to ventricle collapse. The trumpet tipped inflow cannula has the best blood compatibility and is difficult to be obstructed. The trumpet tipped inflow cannula is fit to long-term use LVAD.


Assuntos
Insuficiência Cardíaca/terapia , Coração Auxiliar , Catéteres , Simulação por Computador , Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Hemólise , Humanos , Análise Numérica Assistida por Computador , Trombose/prevenção & controle , Disfunção Ventricular Esquerda/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...