Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1210724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593763

RESUMO

Introduction: The use of cosmetics has become a habit for women. However, their influence on the microbial diversity of the skin has rarely been studied. Methods: Herein, the effect of cosmetics containing complex polysaccharides on the skin bacterial microbiota of female forehead and cheek areas was analyzed. Eighty volunteers were recruited and split into two groups (40 people each); one group was treated with cosmetics containing complex polysaccharides and the other with basic cream for 28 days. Skin samples were collected using sterilized cotton swabs, and 16S rDNA high-throughput sequencing was used to analyze the changes in skin bacterial microbiota composition before and after the intervention. Results and discussion: A total of twenty-four phyla were detected in the forehead and cheek skin samples of 80 volunteers, the top three of which were Proteobacteria, Firmicutes, and Actinobacteria. The main genera of the forehead skin bacterial microbiota were Cutibacterium (11.1%), Acinetobacter (10.4%), Enterococcus (8.9%), Ralstonia (8.8%), and Staphylococcus (8.7%), while those of the cheek skin bacterial microbiota were Staphylococcus (20.0%), Ralstonia (8.7%), Propionibacterium (7.9%), Acinetobacter (7.2%), and Bifidobacterium (6.0%). Compared with basic cream, the use of cosmetics containing complex polysaccharides significantly increased the relative abundance of Staphylococcus and Bacillus in the forehead and cheek and reduced the relative abundance of Propionibacterium and Bifidobacterium. Thus, cosmetics containing complex polysaccharides could modify the composition of skin bacterial microbiota, which may help to maintain stable conditions of the skin.


Assuntos
Actinobacteria , Cosméticos , Microbiota , Feminino , Humanos , Metagenoma , Pele , Bifidobacterium
2.
J Hazard Mater ; 459: 132242, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562355

RESUMO

Due to the limitations of the conventional refinery methods, development of a new method such as oxidative denitrogenation (ODN) is highly desirable. This study described a novel ODN to remove organo-nitrogenous compounds (ONCs) in liquid fuel by ascorbic acid (AscH2) and H2O2 redox system under ambient conditions. Seven ONCs including pyridine, quinoline, acridine, 7,8-benzoquinoline, indole, N-methylpyrrolidone (NMP), and N,N-dimethylformamide (DMF) were chosen to assess the fuel-denitrified ability of the AscH2/H2O2 system. The results showed that the basic group of ONCs (pyridine, quinoline, and acridine) can be effectively removed (removal ratio > 95 %) while the removal efficiency of water-soluble compounds (7,8-benzoquinoline, NMP, and DMF) was moderate (61-68 %) under a mild temperature (30 °C) and atmospheric pressure. Free radical quenching and electron paramagnetic resonance experiments confirmed that hydroxyl and AscH2 radicals played a major role in the degradation of ONCs. The degraded products of quinoline were analyzed by gas chromatography-mass spectroscopy and ion chromatography. Based on the identified intermediate products, a putative reaction pathway majorly involving three steps of N-onium formation, transfer hydrogenation, and free radical oxidative ring-opening was suggested for the quinoline degradation. The presented approach can be performed at a normal temperature and pressure and will live up to expectations in the pre-denitrogenation and selective removal of basic ONCs in fuel oils.

3.
Chemosphere ; 338: 139418, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414292

RESUMO

In this study, FeS/N-doped biochar (NBC) derived from the co-pyrolysis of birch sawdust and Mohr's salt was applied to evaluate the efficiency of catalyzed peroxydisulfate (PDS) oxidation for tetracycline (TC) degradation. It is found that the combination of ultrasonic irradiation can distinctly enhance the removal of TC. This study investigated the effects of control factors such as PDS dose, solution pH, ultrasonic power, and frequency on TC degradation. Within the applied ultrasound intensity range, TC degradation increases with increasing frequency and power. However, excessive power can lead to a reduced efficiency. Under the optimized experimental conditions, the observed reaction kinetic constant of TC degradation increased from 0.0251 to 0.0474 min-1, with an increase of 89%. The removal ratio of TC also increased from ∼85% to ∼99% and the mineralization level from 45% to 64% within 90 min. Through the decomposition testing of PDS, reaction stoichiometric efficiency calculation, and electron paramagnetic resonance experiments, it is shown that the increase in TC degradation of the ultrasound-assisted FeS/NBC-PDS system was attributed to the increase in PDS decomposition and utilization, as well as the increase in SO4•- concentration. The radical quenching experiments showed that SO4•-, •OH, and O2•- radicals were the dominant active species in TC degradation. TC degradation pathways were speculated according to intermediates from HPLC-MS analysis. The test of simulated actual samples showed that dissolved organic matter, metal ions, and anions in waters can undercut the TC degradation in FeS/NBC-PDS system, but ultrasound can significantly reduce the negative impact of these factors.


Assuntos
Antibacterianos , Tetraciclina , Tetraciclina/química , Catálise , Oxirredução
4.
Int J Gen Med ; 16: 2585-2593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346808

RESUMO

The COVID-19 pandemic is a huge public health crisis in the 21st century. In addition to the acute symptoms, a considerable proportion of patients worldwide have suffered from post-COVID-19 syndrome, commonly known as Long COVID. The impact of Long COVID on individual and public health burden cannot be ignored. According to recent researches, Long COVID has been affecting multiple organ systems throughout the body, with respiratory, mental, nervous and digestive symptoms often seen in Chinese population. Clinical studies have proved that symptoms were alleviated by a variety of treatments, such as physical therapy, rehabilitation training, psychological support, behavioral cognitive therapy, stem cell therapy, etc. Based on the current clinical evidence, it is recommended to strengthen the scientific research on Long COVID and actively carry out early monitoring and intervention in the future, so as to effectively prevent the long-term disease burden and economic pressure.

5.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241759

RESUMO

Anti-tumor activity of Tremella fuciformis polysaccharides (TFPS) has been widely reported, but its mechanism remains poorly understood. In this study, we established an in vitro co-culture system (B16 melanoma cells and RAW 264.7 macrophage-like cells) to explore the potential anti-tumor mechanism of TFPS. Based on our results, TFPS exhibited no inhibition on the cell viability of B16 cells. However, significant apoptosis was observed when B16 cells were co-cultured with TFPS-treated RAW 264.7 cells. We further found that mRNA levels of M1 macrophage markers including iNOS and CD80 were significantly upregulated in TFPS-treated RAW 264.7 cells, while M2 macrophage markers such as Arg-1 and CD 206 remained unchanged. Besides, the migration, phagocytosis, production of inflammatory mediators (NO, IL-6 and TNF-α), and protein expression of iNOS and COX-2 were markedly enhanced in TFPS-treated RAW 264.7 cells. Network pharmacology analysis indicated that MAPK and NF-κB signaling pathways may be involved in M1 polarization of macrophages, and this hypothesis was verified by Western blot. In conclusion, our research demonstrated that TFPS induced apoptosis of melanoma cells by promoting M1 polarization of macrophages, and suggested TFPS may be applied as an immunomodulatory for cancer therapy.


Assuntos
Melanoma Experimental , Camundongos , Animais , Humanos , Melanoma Experimental/patologia , Macrófagos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Apoptose , Células RAW 264.7 , NF-kappa B/metabolismo
6.
Front Pharmacol ; 14: 1089537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733502

RESUMO

Background: Exposure to ultraviolet B (UVB) radiation can damage the epidermis barrier function and eventually result in skin dryness. At present, little work is being devoted to skin dryness. Searching for active ingredients that can protect the skin against UVB-induced dryness will have scientific significance. Methods: Saussurea involucrata polysaccharide (SIP) has been shown to have significant antioxidant and anti-photodamage effects on the skin following UVB irradiation. To evaluate the effect of SIP on UVB-induced skin dryness ex vivo, SIP-containing hydrogel was applied in a mouse model following exposure to UVB and the levels of histopathological changes, DNA damage, inflammation, keratinocyte differentiation, lipid content were then evaluated. The underlying mechanisms of SIP to protect the cells against UVB induced-dryness were determined in HaCaT cells. Results: SIP was found to lower UVB-induced oxidative stress and DNA damage while increasing keratinocyte differentiation and lipid production. Western blot analysis of UVB-irradiated skin tissue revealed a significant increase in peroxisome proliferator-activated receptor-α (PPAR-α) levels, indicating that the underlying mechanism may be related to PPAR-α signaling pathway activation. Conclusions: By activating the PPAR-α pathway, SIP could alleviate UVB-induced oxidative stress and inhibit the inflammatory response, regulate proliferation and differentiation of keratinocytes, and mitigate lipid synthesis disorder. These findings could provide candidate active ingredients with relatively clear mechanistic actions for the development of skin sunscreen moisturizers.

7.
Bioengineering (Basel) ; 11(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38247907

RESUMO

In brain-computer interface (BCI) systems, challenges are presented by the recognition of motor imagery (MI) brain signals. Established recognition approaches have achieved favorable performance from patterns like SSVEP, AEP, and P300, whereas the classification methods for MI need to be improved. Hence, seeking a classification method that exhibits high accuracy and robustness for application in MI-BCI systems is essential. In this study, the Sparrow search algorithm (SSA)-optimized Deep Belief Network (DBN), called SSA-DBN, is designed to recognize the EEG features extracted by the Empirical Mode Decomposition (EMD). The performance of the DBN is enhanced by the optimized hyper-parameters obtained through the SSA. Our method's efficacy was tested on three datasets: two public and one private. Results indicate a relatively high accuracy rate, outperforming three baseline methods. Specifically, on the private dataset, our approach achieved an accuracy of 87.83%, marking a significant 10.38% improvement over the standard DBN algorithm. For the BCI IV 2a dataset, we recorded an accuracy of 86.14%, surpassing the DBN algorithm by 9.33%. In the SMR-BCI dataset, our method attained a classification accuracy of 87.21%, which is 5.57% higher than that of the conventional DBN algorithm. This study demonstrates enhanced classification capabilities in MI-BCI, potentially contributing to advancements in the field of BCI.

8.
Front Physiol ; 13: 976421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160845

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a high prevalence worldwide. Increasing evidence suggests that the gut microbiota plays an important role in the pathogenesis of AD. In this study, we sought to verify the effect of Dendrobium candidum polysaccharides (DCP) on AD induced by 2,4-Dinitrofluorobenzene (DNFB) in Balb/c mice regarding its impact on the intestinal microbiome. We found that 2-week oral administration of DCP improved AD-like symptoms and histological damage of skin, reduced mast cell infiltration, down-regulated the level of serum total IgE and the expression of pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-4 and IL-6, and increased the expression level of anti-inflammatory cytokine IL-10. The beneficial effect of DCP was attributed to the restoration of the intestinal microbiome composition and the unbalance of the intestinal homeostasis. Our results indicated that DCP might be used as a promising novel microbiota-modulating agent for the treatment of AD.

9.
Int J Biol Macromol ; 222(Pt A): 154-166, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122780

RESUMO

The optimum extraction condition for the Saussurea involucrata polysaccharide (SIP) was determined to be a temperature of 80 °C, time 2 h, and a liquid-solid ratio of 30 mL/g with a yield of 11.37 %. An acidic homogenous polysaccharide, namely SIP-II was isolated from Saussurea involucrate through anion exchange and gel permeation column chromatography. The structure of the SIP-II was elucidated through the combination of HPLC, GC-MS, IC, peroxide oxidation, smith degradation, methylation, NMR analysis, it was mainly composed of arabinose, rhamnose, galactose, galacturonic acid, and glucose with the molar ratio of 19.85:20.30: 27.12:11.95:8.69 with a molecular weight of 237,570 Da. The glycosidic linkages of SIP-II mainly composed of →1)-α-L-Rhap-(2→, T-Araf, →1)-ß-D-GalpA-(4→, →1)-ß-D-Galp-(3,6→, →1)-ß-D-Galp-(6→, →1)-α-L-Rhap-(2,4→, T-Galp, and →1)-α-L-Araf-(5→. Meanwhile, the structures were characterized through extensive analysis of UV, FT-IR, SEM-EDX, CD, XRD, and TG. SIP-II possessed a remarkable anti-inflammatory activity by effectively inhibiting the expression of pro-inflammatory cytokines and inflammation-related mediators in LPS-stimulated RAW264.7 macrophages, and the anti-inflammatory response of SIP-II might be attributed to the regulation of the NF-κB, MAPK and JAK/STAT pathways. The results showed that polysaccharides from Saussurea involucrate could be a potential ingredient in the functional food and pharmaceutical industry.


Assuntos
Saussurea , Saussurea/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Galactose/análise , Peso Molecular
10.
Sci Total Environ ; 837: 155791, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561923

RESUMO

FeS nanoparticles loaded on nitrogen-doped biochar (FeS/BNC) were fabricated by pyrolyzing coffee husks pretreated with Mohr's salt. The nitrogen doping and FeS loading of biochar are simultaneously achieved in one-pot pyrolysis. The elemental analysis, SEM, TEM, XRD, XPS, Raman, FTIR and N2 adsorption-desorption technologies were used to characterize the composition and structure of FeS/NBC. The appraisement for removing aqueous Cr(VI) testified that FeS/NBC offered a synergistic scavenging effect of Cr(VI) by FeS and NBC. The effect of crucial experimental conditions (FeS/NBC dosage, foreign ions, initial pH and concentration of Cr(VI) solution) were investigated. The Cr(VI) removal capacity was as high as 211.3 ± 26 mg g-1 under the optimized condition. The practicability of FeS/NBC was examined by using simulated actual samples from tap water and lake water. The mechanism examination showed that surface adsorption/reduction and solution reduction were implicated in the removal of Cr(VI). The current work introduces a novel FeS/NBC composite prepared by an in situ pyrolysis method with excellent potential for chromium pollution remediation.


Assuntos
Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cromo/análise , Compostos Ferrosos , Nitrogênio/análise , Água , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 29(14): 20571-20592, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741266

RESUMO

The geographical distribution of plant resources is of great significance for studying the origin, distribution, and evolution of species. Climate and geographical factors help shape the distribution of plant species. Dendrobium is a commonly used traditional medicine and a precious economic crop in China. Owing to the over-exploitation and increasing medicinal demand of Dendrobium species plants, systematic investigation of the geographical distribution of the plants and analysis of their potential distribution under climate change are important for protecting Dendrobium plants. We adopted DIVA-GIS to analyze the georeferenced records of 76 species of the Dendrobium species collected from 2166 herbarium records. We analyzed the eco-geographical distribution and species richness of the genus Dendrobium to simulate the distribution of current and future scenarios using MaxEnt. The results revealed the distribution of Dendrobium in 30 provinces of China, with species abundance in Yunnan, Guangxi, Guangdong, and Hainan. Our model identified the following bioclimatic variables: precipitation in the driest months and the warmest seasons, isothermality, and range of annual temperature. Among them, annual precipitation is the most crucial bioclimatic variable affecting the distribution of 16 selected Dendrobium species. The change of climate in the future will lead to an increase in habitat suitability for some Dendrobium species as follows: D. officinal 2.12%, D. hancockii by 6.00%, D. hercoglossum by 8.25%, D. devonianum by 7.71%, D. henryi by 9.40%, and D. hainanense by 13.70%. By contrast, habitat suitability will dramatically decrease for other Dendrobium species: D. chrysotoxum by 0.89%, D. chrysanthum by 12.68%, D. fimbriatum by 5.07%, D. aduncum by 11.44%, D. densiflorum by 18.47%, D. aphyllum by 8.05%, D. loddigesii by 16.45%, D. nobile by 5.41%, D. falconeri by 8.73%, and D. moniliforme by 10.61%. The reduction of these species will be detrimental to the medicinal and economic value of the genus Dendrobium. Therefore, targeted development and reasonable management strategies should be adopted to conserve these valuable resources.


Assuntos
Mudança Climática , Dendrobium , China , Ecossistema , Temperatura
12.
Aging Dis ; 12(2): 425-440, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33815875

RESUMO

In the last decades, the strong increase in the proportion of older people worldwide, and the increased prevalence of age associated degenerative diseases, have put a stronger focus on aging biology. In spite of important progresses in our understanding of the aging process, an integrative view is still lacking and there is still need for efficient anti-aging interventions that could improve healthspan, reduce incidence of age-related disease and, eventually, increase the lifespan. Interestingly, some compounds from traditional medicine have been found to possess anti-oxidative and anti-inflammatory properties, suggesting that they could play a role as anti-aging compounds, although in depth in vivo investigations are still scarce. In this study we used one the major aging model organisms, Drosophila melanogaster, to investigate the ability of four herb extracts (HEs: Dendrobium candidum, Ophiopogon japonicum, Ganoderma sinense and Panax notoginseng) widely used in traditional Chinese medicine (TCM) to slow down aging and improve healthspan of aged animals. Combining multiple approaches (stress resistance assays, lifespan and metabolic measurements, functional heart characterizations and behavioral assays), we show that these four HEs provide in vivo protection from various insults, albeit with significant compound-specific differences. Importantly, extracts of P. notoginseng and G. sinense increase the healthspan of aging animals, as shown by increased activity during aging and improved heart function. In addition, these two compounds also provide protection in a Drosophila model of Huntington's disease (HD), suggesting that, besides their anti-aging properties in normal individuals, they could be also efficient in the protection against age-related diseases.

13.
Huan Jing Ke Xue ; 42(5): 2469-2479, 2021 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-33884818

RESUMO

To investigate the effects of long-term fertilization on the accumulation and availability of heavy metals in reddish paddy soil and to analyze the major influencing factors, soil samples were collected after the later rice was harvested in 2018 from a long-term fertilization field experiment that began in 1984. Six treatments were selected, namely CK (control without fertilization), PK (P and K fertilizer), and NPK (N, P, and K fertilizer), and different proportions of organic fertilizer plus chemical fertilizer (M1NPK: 30%M+70%NPK; M2NPK: 50%M+50%NPK; and M3NPK: 70%M+30%NPK), soil chemical properties, total and available heavy metal contents, and the relationships between the available forms of heavy metals and soil chemical parameters and total heavy metals (THM) were analyzed. The results showed that ① long-term fertilization changed the soil chemical properties; compared with those of CK, PK significantly increased the contents of soil available phosphorus (AP) and available potassium (AK), NPK significantly increased the soil organic matter (SOM), cation exchange capacity (CEC), AP, and AK, and the organic fertilizer treatments significantly increased the contents of SOM, CEC, AP, AK, and nitrate (NO3--N). ② There were slight variations in the THM contents under the chemical fertilizer treatments (PK and NPK), whereas the organic fertilizer treatments significantly increased the total contents of Cu, Zn, and Cd. ③ The chemical fertilizer treatments significantly increased the available Cr and As, whereas the organic fertilizer treatments significantly increased the available Cu, Zn, Cr, Cd, As, and Fe. ④ There were significant positive correlations between the available Cu, Zn, Cr, Cd, As, and Fe and the SOM, CEC, AP, and NO3--N. In addition, the available Zn and Cd were significantly positively correlated with the soil pH, whereas the available Pb was significantly negatively correlated with soil pH, SOM, CEC, and NO3--N. ⑤ There were significant positive correlations between the available and total contents of Cu, Zn, and Cd, whereas there were significant negative correlations between the available and total contents of Cr and Fe. ⑥ Redundancy analysis showed that SOM and pH accounted for 80.7% and 5.5% of the variation in THM, whereas the soil CEC, AP, and pH accounted for 81.1%, 4.9%, and 3.3% of the variation in the available heavy metals, respectively. ⑦ The partial least squares path model analysis showed that the path coefficients of the THM, CEC, and AP on the available state of heavy metals were 0.459, 0.417, and 0.293, respectively. Long-term application of organic manure, such as pig manure, significantly improved the soil chemical properties and affected the availability of heavy metals, and soil CEC and AP may play key roles in regulation.

14.
PLoS One ; 15(7): e0235975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649704

RESUMO

Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root to shoot in O. sativa. N deficiency decreased the photosynthesis rate and the maximum quantum yield of primary photochemistry (Fv/Fm), however, increased the intercellular CO2 concentration and primary fluorescence (Fo). N deficiency significantly increased the production of H2O2 and membrane lipid peroxidation revealed as increased MDA content in O. sativa leaves. N deficiency significantly increased the contents of starch, sucrose, fructose, and malate, but did not change that of glucose and total soluble protein in O. sativa leaves. The accumulated carbohydrates and H2O2 might further accelerate biosynthesis of lignin in O. sativa leaves under N limitation. A total of 1635 genes showed differential expression in response to N deficiency revealed by Illumina sequencing. Gene Ontology (GO) analysis showed that 195 DEGs were found to highly enrich in nine GO terms. Most of DEGs involved in photosynthesis, biosynthesis of ethylene and gibberellins were downregulated, whereas most of DEGs involved in cellular transport, lignin biosynthesis and flavonoid metabolism were upregulated by N deficiency in O. sativa leaves. Results of real-time quantitative PCR (RT-qPCR) further verified the RNA-Seq data. For the first time, DEGs involved oxygen-evolving complex, phosphorus response and lignin biosynthesis were identified in rice leaves. Our RNA-Seq data provided a global view of transcriptomic profile of principal processes implicated in the adaptation of N deficiency in O. sativa and shed light on the candidate direction in rice breeding for green and sustainable agriculture.


Assuntos
Flavonoides/metabolismo , Lignina/metabolismo , Nitratos/metabolismo , Oryza/genética , Fotossíntese , Carboidratos/análise , Clorofila A/química , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA de Plantas/química , RNA de Plantas/metabolismo , Análise de Sequência de RNA
15.
Front Pharmacol ; 11: 593832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390976

RESUMO

Background: Macrophages can selectively recognize and eliminate senescent cells, but this function is impaired with age, resulting in excessive accumulation of senescent cells in the skin, which ultimately causes skin aging. Therefore, enhancing the immune surveillance ability of macrophages to clear senescent keratinocytes and fibroblasts from aging skin may be an effective skin rejuvenation strategy. Methods: In this study, a macrophage and senescent skin cell co-culture model was established whereby THP-1-derived macrophages and tert-butyl hydroxide-induced senescent skin cells (HaCaT and HFF-1) were grown in the same culture. Senescent skin cells were detected by the SPiDER-ßgal assay, and the expression of secretory phenotype factors related to senescence was assayed by qPCR. The effect of carnosine on the number of SA-ß-gal positive skin cells in the macrophage-senescent skin cell co-culture was evaluated and compared with that in the senescent skin cell monoculture. Results: Carnosine promoted macrophage-mediated elimination of senescent skin cells in the co-culture. Through the AKT2 signaling pathway, carnosine upregulated the expression of CD36 and receptors for advanced glycation end products and elevated the phagocytic capacity of the macrophages, thereby promoting the ability of the macrophages to eliminate the senescent skin cells. Conclusions: Carnosine could boost the immune surveillance ability of macrophages to clear senescent keratinocytes and fibroblasts in the macrophage-senescent skin cell co-culture by activating the AKT2 signaling pathway, suggesting the possibility of using carnosine as an agent to reverse skin aging.

16.
Food Chem Toxicol ; 132: 110730, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369850

RESUMO

Mulberry leaf is a newly accepted vegetable for daily diet. It tastes good and has multiple health benefits, including antioxidant and anti-inflammatory activities. However, the chemicals responsible for these health benefits remain unveiled. Prenylated phenolics are characteristic bioactive compounds in mulberry leaf, which are recognized as good antioxidants. In this work, moracin N was purified from mulberry leaf. It showed better antioxidant activities than resveratrol. The EC50 value of cellular antioxidant activity was 24.92 µM, and the IC50 value against DPPH radical was 40.00 µM. The prenyl group rendered the molecule more membrane affinity which improved the bioavailability. The furan ring was critical for the antioxidant behaviour. The cell viability test revealed that moracin N had a good safety. These results pointed out that moracin N contributed to the antioxidant activity of mulberry leaf.


Assuntos
Antioxidantes/farmacologia , Benzofuranos/análise , Benzofuranos/farmacologia , Morus/química , Folhas de Planta/química , Estilbenos/análise , Estilbenos/farmacologia , Benzofuranos/química , Benzofuranos/farmacocinética , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Estrutura Molecular , Análise Espectral/métodos , Estilbenos/química , Estilbenos/farmacocinética
17.
Front Cell Dev Biol ; 7: 44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001530

RESUMO

The aim of the present study was to evaluate the impact of the microenvironment produced by dermal microvascular endothelial cells, secondary to a pro-inflammatory challenge, on 2D culture models using dermal fibroblasts and in 3D reconstructed skin model using dermal fibroblasts and keratinocytes from healthy donors. We hypothesized that specific microvascular endothelial low grade inflammation could change fibroblasts phenotype and be involved in extracellular matrix (ECM) modification and skin alteration. Following IFNγ, TNFα, IL-1ß pro-inflammatory stress on Human Dermal Endothelial Cells (HDMEC) we observed the increased release of Chemokine ligand 2 (CCL2), IL-6 and IL-8 but not VEGF-A in the conditioned medium (CM). The subsequent addition of this endothelial pro-inflammatory CM in dermal fibroblasts revealed an upregulation of IL6, IL8 and CCL2 but no NF-κB gene expression. The resulting ECM formation was impaired with a reduction of the collagen 1 network and a decrease in COL1A1 gene expression in 2D and 3D models. Collagen 1 and pro-LOX protein expression were significantly reduced confirming an impairment of the collagen network related to endothelial inflammation secretion. To conclude, this work showed that, without any immune cells, the endothelial secretion in response to a pro-inflammatory stress is able to activate the fibroblasts that will maintain the pro-inflammatory environment and exacerbate ECM degradation.

18.
Phys Chem Chem Phys ; 21(13): 7009-7015, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869669

RESUMO

The effects of discharge cutoff voltages on the structural evolution and electrochemical performance of the LiVO3 cathode upon cycling are investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. It is found that a lower cutoff voltage causes formation and accumulation of unstable V4+ ions on the surface of the electrode, which easily leads to severe structural deterioration and capacity fading. A limited cutoff voltage between 3.5 and 1.5 V can effectively enhance the structural stability and consequently the electrode demonstrates 75.9% capacity retention and neglectable working voltage decay over 400 cycles. The result that the operation voltage range strongly affects the structural stability of cycled LiVO3 provides a new insight into exploring feasible approaches to achieve highly stable LiVO3 and other vanadium-based electrodes for lithium-ion batteries.

19.
RSC Adv ; 9(23): 12998-13006, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520788

RESUMO

Dry eye disease (DED) is characterized by increased osmolality of tears due to a lack of production or increased evaporation of tears. Hyperosmolarity is involved in DED pathogenesis, which damages ocular surface cells and leads to inflammation of the ocular surface. We investigated the anti-inflammatory effect of paeoniflorin (PF) from Paeonia lactiflora Pall. on human corneal epithelial (HCE) cells and its molecular mechanisms, and its therapeutic effects on a mouse model of experimental dry eye (EDE). HCE cells were treated with PF-1 (PF prepared in vitro; 0.01%, 0.1% and 1.0%). Protein production/activity was determined by Western blotting, RT-PCR and immunofluorescent staining. Meanwhile, eye drops containing 0.01%, 0.1% and 1.0% of PF-2 (PF prepared in vivo) were applied to the EDE, and the tear volume, corneal fluorescein-staining score, detachment of the corneal epithelium, and immunohistochemical staining were measured after 28 days of treatment. PF reduced expression of proinflammatory factors such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α in HCE cells, and significantly improved dry-eye signs, including tear volume, desquamation of the corneal epithelium and ocular surface inflammation in mice treated with 1.0% PF-2. Further study showed that PF improved EDE by inhibiting mitogen-activated protein kinase (MAPK), phosphorylated (p)-c-Jun N-terminal kinase (JNK) and pp-38, and nuclear factor kappa B (NF-κB) signaling pathways. These data suggest that PF can improve dry-eye symptoms and reduce expression of proinflammatory mediators. Hence, eye drops containing PF could be used as an adjunctive treatment for DED.

20.
Int Immunopharmacol ; 64: 319-325, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30243067

RESUMO

Psoriasis is a usual immune-mediated inflammatory skin disease with undefined pathogenesis. Aromatic-turmerone (ATM) is a mainly constituent of essential oil from Curcuma longa L. It has been shown to exhibit strong anti-oxidant, anti-tumor activities and anti-inflammatory effects. In this study, we investigated the effects of ATM on imiquimod (IMQ)-induced psoriasis-like BALB/c mice and its molecular mechanisms for anti-inflammatory effect. ATM showed inhibition of the transfer of CD8+ T cells in epidermis, and reduced expression of NF-κB and COX-2 as well as phosphorylation of p38 MAPK. It also decreased the level of TNF-α and IL-6, and down-regulates IL-17 IL-22 and IL-23 mRNA synthesis. Notably, we demonstrated that topically applied ATM alleviated skin inflammation in IMQ-induced mice. These results indicate that ATM, a natural active compound exhibits anti-inflammatory activity and is a promising candidate molecule to treat inflammatory skin diseases, such as psoriasis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Imiquimode/toxicidade , Cetonas/uso terapêutico , Psoríase/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Ciclo-Oxigenase 2/análise , Citocinas/análise , Feminino , Cetonas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/análise , Psoríase/imunologia , Sesquiterpenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...