Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(6): 1421-1424, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489415

RESUMO

In recent years, utilizing nitrogen-vacancy color centers in diamond for temperature sensing has drawn great attention. However, increasing the sensitivity has encountered challenges due to the intrinsic temperature-dependent energy level shift, i.e., temperature responsivity, being limited to -74 kHz/K. In this Letter, we take advantage of the magnetic field to regulate the energy level to enhance temperature sensitivity. The sensor is formed by adhering a micron-sized diamond on the end face of an optical fiber, and a small magnet is mounted at a certain distance with the diamond exploiting a cured polydimethylsiloxane block as the bridge. The temperature change leads to the variation of the distance between the diamond and the magnet, thus affecting the magnetic strength felt by the diamond. This finally contributes an additional temperature-induced energy level shift, giving rise to an enhanced sensitivity. Experimental results demonstrated the proposed scheme and achieved a 4.2-fold improvement in the temperature responsivity and a 2.1-fold enhancement in sensitivity. Moreover, the diamond and the fiber-optic integrated structure improve the portability of the sensor.

2.
ACS Appl Mater Interfaces ; 16(5): 6057-6067, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38285926

RESUMO

Silver nanowire (AgNW) networks with self-assembled structures and synaptic connectivity have been recently reported for constructing neuromorphic memristors. However, resistive switching at the cross-point junctions of the network is unstable due to locally enhanced Joule heating and the Gibbs-Thomson effect, which poses an obstacle to the integration of threshold switching and memory function in the same AgNW memristor. Here, fragmented AgNW networks combined with Ag nanoparticles (AgNPs) and mercapto self-assembled monolayers (SAMs) are devised to construct memristors with stable threshold switching and memory behavior. In the above design, the planar gaps between NW segments are for resistive switching, the AgNPs act as metal islands in the gaps to reduce threshold voltage (Vth) and holding voltage (Vhold), and the SAMs suppress surface atom diffusion to avoid Oswald ripening of the AgNPs, which improves switching stability. The fragmented NW-NP/SAM memristors not only circumvent the side effects of conventional NW-stacked junctions to provide durable threshold switching at >Vth but also exhibit synaptic characteristics such as long-term potentiation at ultralow voltage (≪Vth). The combination of NW segments, nanoparticles, and SAMs blazes a new trail for integrating artificial neurons and synapses in AgNW network memristors.

3.
Small ; 19(50): e2304033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649175

RESUMO

Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.

4.
Biosensors (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37232867

RESUMO

Surface plasmon resonance (SPR) based sensors play an important role in the biological and medical fields, and improving the sensitivity is a goal that has always been pursued. In this paper, a sensitivity enhancement scheme jointly employing MoS2 nanoflower (MNF) and nanodiamond (ND) to co-engineer the plasmonic surface was proposed and demonstrated. The scheme could be easily implemented via physically depositing MNF and ND overlayers on the gold surface of an SPR chip, and the overlayer could be flexibly adjusted by controlling the deposition times, thus approaching the optimal performance. The bulk RI sensitivity was enhanced from 9682 to 12,219 nm/RIU under the optimal condition that successively deposited MNF and ND 1 and 2 times. The proposed scheme was proved in an IgG immunoassay, where the sensitivity was twice enhanced compared to the traditional bare gold surface. Characterization and simulation results revealed that the improvement arose from the enhanced sensing field and increased antibody loading via the deposited MNF and ND overlayer. At the same time, the versatile surface property of NDs allowed a specifically-functionalized sensor using the standard method compatible with a gold surface. Besides, the application for pseudorabies virus detection in serum solution was also demonstrated.


Assuntos
Técnicas Biossensoriais , Nanodiamantes , Animais , Ressonância de Plasmônio de Superfície/métodos , Molibdênio , Ouro , Imunoensaio/métodos , Técnicas Biossensoriais/métodos
5.
Opt Express ; 31(9): 14685-14693, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157327

RESUMO

Magnetic field detection exploiting nitrogen-vacancy (NV) centers in diamond has gained increasing attention and development in recent years. Combining diamond NV centers to optical fibers provides a way for achieving magnetic sensors with high integration and portability. Meanwhile, new methods or techniques are urgently desired to improve the detection sensitivity of such sensors. In this paper, we present an optical-fiber magnetic sensor based on the NV ensemble in diamond, and employ the well-designed magnetic flux concentrators to enhance the sensitivity up to 12 pT/Hz1/2, an outstanding level among the diamond-integrated optical-fiber magnetic sensors. The dependence of sensitivity on the key parameters including the size and gap width of the concentrators are investigated by simulations and experiments, based on which the predictions on the further enhancement of sensitivity to fT level are presented.

6.
ACS Sens ; 7(12): 3660-3670, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36454224

RESUMO

Owing to the unique electronic spin properties, nitrogen-vacancy (NV) centers hosted in diamond have emerged as a powerful quantum tool for detecting various physical parameters and biological species. In this work, an optical-fiber quantum probe, configured by chemically modifying nanodiamonds on the surface of a cone fiber tip, is developed. Based on the continuous-wave optically detected magnetic resonance method and lock-in amplification technique, it is found that the sensing performance of probes can be engineered by varying the nanodiamond dispersion concentration and modification duration during the chemical modification process. Combined with a pair of magnetic flux concentrators, the magnetic field detection sensitivity has reached 0.57 nT/Hz1/2@1 Hz, a new record among the fiber magnetometers based on nanodiamonds. Taking Gd3+ as the demo, the capability of probes in paramagnetic species detection is also demonstrated experimentally. Our work provides a new approach to develop NV centers as quantum probes featuring high integration, multifunction, high sensitivity, etc.


Assuntos
Nanodiamantes , Nanodiamantes/química , Diamante , Campos Magnéticos
7.
Nanoscale Horiz ; 7(11): 1299-1339, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36193823

RESUMO

Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.


Assuntos
Nanoestruturas , Nanofios , Nanofios/química , Nanoestruturas/química , Metais , Condutividade Elétrica , Catálise
8.
ACS Appl Mater Interfaces ; 14(37): 42412-42419, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070359

RESUMO

A high-performance surface plasmon resonance (SPR) fiber sensor is proposed with hyperbolic metamaterials (HMMs), nanodiamonds (NDs), and polydimethylsiloxane (PDMS) to enhance the temperature sensitivity and response time. The HMM with tunable dispersion can break through the structural limitations of the optical fiber to improve the refractive index (RI) sensitivity, while NDs and PDMS with large thermo-optic coefficients enable to induce significant RI change under varied thermal fields. The ternary composite endows the sensor with a high temperature sensitivity of -9.021 nm/°C, which is 28.6 times higher than that of the conventional gold film-based SPR sensor. Furthermore, NDs with high thermal conductivity (2200 W/mK) effectively expedite the thermal response of PDMS, which reduces the response time from 80 to 6 s. It is believed that the proposed sensors with high sensitivity, fast response time, and compact size have great potential for applications in industrial production, healthcare, environmental monitoring, etc.

9.
Biomed Opt Express ; 13(1): 274-283, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154870

RESUMO

Cucurbitacin E (CuE) plays an important role in anticancer, antichemical carcinogenesis, and body immunity, etc., and the detection of its concentration is meaningful to pharmacological studies and clinical applications. However, the small molecular weight of CuE makes direct detection difficult through a surface plasmon resonance (SPR) sensor. In this work, we propose a cells-amplified signal strategy at the plasmonic interface, realizing the detection of CuE with ultra-low concentration. The seeded HeLa cells are modified onto the surface of the SPR sensor, and a small amount of CuE can lead to the remarkable morphology change of cells and the release of cell-related substances onto the plamonic interface, thus significantly amplifying the signal. Experimental results show that by using an unmodified SPR sensor with the bulk refractive index sensitivity of 2367.3 nm/RIU (RIU: refractive index unit), there no effective signal can be detected during the CuE concentration range of 0-100 nM; whereas, employing the proposed strategy, the signal for CuE detection can be significantly enhanced, resulting in a high detection sensitivity of 0.6196 nm/nM, corresponding to a limit of detection of 45.2 pM (25.2 pg/mL). The proposed cells-based signal amplifying strategy shows great potential applications in drug screening or bio-sensing to small molecules with low concentration.

10.
Biosens Bioelectron ; 198: 113787, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864241

RESUMO

High sensitivity and capturing ratio are strongly demanded for surface plasmon resonance (SPR) sensors when applied in detection of small molecules. Herein, an SPR sensor is combined with a novel smart material, namely, MoS2 nanoflowers (MNFs), to demonstrate programmable adsorption/desorption of small bipolar molecules, i.e., amino acids. The MNFs overcoated on the plasmonic gold layer increase the sensitivity by 25% compared to an unmodified SPR sensor, because of the electric field enhancement at the gold surface. Furthermore, as the MNFs have rich edge sites and negatively charged surfaces, the MNF-SPR sensors exhibit not only much higher bipolar-molecule adsorption capability, but also efficient desorption of these molecules. It is demonstrated that the MNF-SPR sensors enable controllable detection of amino acids by adjusting solution pH according to their isoelectric points. In addition, the MNFs decorated on the plasmonic interface can be as nanostructure frameworks and modified with antibody, which allows for specific detection of proteins. This novel SPR sensor provides a new simple strategy for pre-screening of amino acid disorders in blood plasma and a universal high-sensitive platform for immunoassay.


Assuntos
Técnicas Biossensoriais , Adsorção , Humanos , Molibdênio , Ressonância de Plasmônio de Superfície
11.
Opt Express ; 29(23): 37591-37601, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808828

RESUMO

A new mechanism between the temperature sensitivity and the length ratio of PMMA coating to no-core fiber (NCF) is reported to realize an optical fiber temperature sensor with ultra-high sensitivity and compact size by PMMA-coated no-core fiber. By both theory and experiment, it is found that the sensitivity has a linear response to the length ratio of PMMA coating to NCF rather than the conventional viewpoint that it depends on the length of PMMA. Based on this conclusion and the high thermo-optic coefficient of PMMA, the temperature sensitivity is significantly enhanced as high as -9.582 nm/℃ through a simple, compact, and inexpensive sensor with 5 mm NCF and 3 mm PMMA coating. Our work opens a new avenue of a significant increase in the detection sensitivity of miniaturized fiber temperature sensors.

12.
ACS Appl Mater Interfaces ; 13(44): 52880-52891, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714042

RESUMO

Stretchable and transparent electrodes (STEs) are indispensable components in numerous emerging applications such as optoelectrical devices and wearable devices used in health monitoring, human-machine interaction, and artificial intelligence. However, STEs have limitations in conductivity, robustness, and transmittance owing to the exposure of the substrate and fatigue deformation of nanomaterials under strain. In this study, an STE consisting of conductive materials embedded in in situ self-cracking strain-spread channels by wettability self-assembly is fabricated. Finite element analysis is used to simulate the crevice growth using the representative unit cell network and strain deformation using a random network. The embedded conductive materials are partly protected by the strain-opening crevice channel, and network dissociation is avoided under stretching, showing a maximum strain of 125%, a transmittance of approximately 89.66% (excluding the substrate) with a square resistance of 9.8 Ω sq-1, and high stability in an environment with high temperature and moisture. The wettability self-assembly coating process is verified and expanded to several kinds of hydrophilic inks and hydrophobic coating materials. The fabricated STE can be employed as a strain sensor in motion sensing, vital sign and posture feedback, and mimicking bioelectronic spiderweb with spatial gravity induction.

13.
RSC Adv ; 11(59): 37559-37567, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496388

RESUMO

A tunable near-infrared surface plasmon resonance sensor based on graphene plasmons via electrostatic gating control is investigated theoretically. Instead of the traditional refractive index sensing, the sensor can respond sensitively to the change of the chemical potential in graphene caused by the attachment of the analyte molecules. This feature can be potentially used for biological sensing with high sensitivity and high specificity. Theoretical calculations show that the chemical potential sensing sensitivities under wavelength interrogation patterns are 1.5, 2.21, 3, 3.79, 4.64 nm meV-1 at different wavebands with centre wavelengths of 1100, 1310, 1550, 1700, 1900 nm respectively, and the full width half maximum (FWHM) is also evaluated to be 10, 25.5, 43, 55.5, 77 nm at these different wavebands respectively. It can be estimated that the theoretical limit of detection (LOD) in DNA sensing of the proposed sensor can reach the femtomolar level, several orders of magnitude superior to that of noble metal-based SPR sensors (nanomolar or subnanomolar scale), and is comparable to that of noble metal-based SPR sensors with graphene/Au-NPs as a sensitivity enhancement strategy. The FWHM is much smaller than that of the noble metal-based SPR sensors, making the proposed sensor have a potentially higher figure of merit (FOM). This work provides a new way of thinking to detect in an SPR manner the analyte that can cause chemical potential change in graphene and provides a beneficial complement to refractive index sensing SPR sensors.

14.
ACS Appl Mater Interfaces ; 12(48): 53984-53993, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32872767

RESUMO

The ability to engineer microscale and nanoscale morphology upon metal nanowires (NWs) has been essential to achieve new electronic and photonic functions. Here, this study reports an optically programmable Plateau-Rayleigh instability (PRI) to demonstrate a facile, scalable, and high-resolution morphology engineering of silver NWs (AgNWs) at temperatures <150 °C within 10 min. This has been accomplished by conjugating a photosensitive diphenyliodonium nitrate with AgNWs to modulate surface-atom diffusion. The conjugation is UV-decomposable and able to form a cladding of molten salt-like compounds, so that the PRI of the AgNWs can be optically programmed and triggered at a much lower temperature than the melting point of AgNWs. This PRI self-assembly technique can yield both various novel nanostructures from single NW and large-area microelectrodes from the NW network on various substrates, such as a nanoscale dot-dash chain and the microelectrode down to 5 µm in line width that is the highest resolution ever fabricated for the AgNW-based electrode. Finally, the patterned AgNWs as flexible transparent electrodes were demonstrated for a wearable CdS NW photodetector. This study provides a new paradigm for engineering metal micro-/nanostructures, which holds great potential in fabrication of various sophisticated devices.

15.
Opt Lett ; 45(17): 4746-4749, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870847

RESUMO

A highly sensitive surface plasmon resonance fiber sensor for a vector magnetic field is proposed. The sensor is composed of a half-side gold-coated multimode-single-mode-multimode hetero-core fiber structure encapsulated with ferrofluids. The half-side gold film on the fiber not only produces the surface plasmon resonance, but also breaks the centrosymmetry of the light field in the fiber. Moreover, the magnetic-field-dependent anisotropy of the surrounding ferrofluids makes the sensor sensitive to both the intensity and direction of the magnetic field. Owing to the unique half-side coating configuration and the resulting enhancement of the evanescent field, the sensor can achieve a sensitivity as high as 1008 pm/Oe to the magnetic field intensity. The proposed sensor, possessing advantages such as high sensitivity, ease of fabrication, and low cost, has potential in the detection of a weak vector magnetic field.

16.
Opt Express ; 28(17): 25562-25573, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907073

RESUMO

Hyperbolic metamaterials (HMMs) have attracted increasing attentions because of their unique dispersion properties and the flexibility to control the dispersion by changing the components and fractions of the composed materials. In this work, for the first time, we demonstrate a plasmonic sensor based on a side-polished few-mode-fiber coated with a layered of HMM, which is composed of alternating layers of Ag and TiO2. To optimize the sensor performance, the effects of the metal filling fraction (ρ) and the number of bilayers (Nbi) on the HMM dispersion are thoroughly engineered with the effective medium theory and the finite element method. It is found that the HMM with ρ=0.7 and Nbi = 3 can provide the average sensitivity of 5114.3 nm/RIU (RIU: refractive index unit), and the highest sensitivity 9000 nm/RIU in the surrounding refractive index (SRI) ranging from 1.33 to 1.40 RIU. The corresponding figure of merit (FOM) reaches a maximum of 230.8 RIU-1 which is much higher than that of the conventional silver film based SPR sensor. The influence of ρ and Nbi on the sensitivity are well explained from the aspects of the electrical field distribution and the dispersion relationship. This work opens a gate to significantly improve fiber plasmonic sensors performance by engineering the HMM dispersion, which is expected to meet the emergent demand in the biological, medical and clinical applications.

17.
ACS Appl Mater Interfaces ; 12(42): 47729-47738, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967418

RESUMO

It has long been a challenge to develop strain sensors with large gauge factor (GF) and high transparency for a broad strain range, to which field silver nanowires (AgNWs) have recently been applied. A dense nanowire (NW) network benefits achieving large stretchability, while a sparse NW network favors realizing high transparency and sensitive response to small strains. Herein, a patterned AgNW-acrylate composite-based strain sensor is developed to circumvent the above trade-off issue via a novel ultrasonication-based patterning technique, where a water-soluble, UV-curable acrylate composite was blended with AgNWs as both a tackifier and a photoresist for finely patterning dense AgNWs to achieve high transparency, while maintaining good stretchability. Moreover, the UV-cured AgNW-acrylate patterns are brittle and capable of forming parallel cracks which effectively evade the Poisson effect and thus increase the GF by more than 200-fold compared to that of the bulk AgNW film-based strain sensor. As a result, the AgNW-based strain sensor possesses a GF of ∼10,486 at a large strain (8%), a high transparency of 90.3%, and a maximum stretchability of 20% strain. The precise monitoring of human radial pulse and throat movements proves the great potential of this sensor as a measurement module for wearable healthcare systems.

18.
Biomaterials ; 232: 119740, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31918227

RESUMO

Point-of-care testing (POCT), defined as the test performed at or near a patient, has been evolving into a complement to conventional laboratory diagnosis by continually providing portable, cost-effective, and easy-to-use measurement tools. Among them, microneedle-based POCT devices have gained increasing attention from researchers due to the glorious potential for detecting various analytes in a minimally invasive manner. More recently, a novel synergism between microneedle and wearable technologies is expanding their detection capabilities. Herein, we provide an overview on the progress in microneedle-based transdermal biosensors. It covers all the main aspects of the field, including design philosophy, material selection, and working mechanisms as well as the utility of the devices. We also discuss lessons from the past, challenges of the present, and visions for the future on translation of these state-of-the-art technologies from the bench to the bedside.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Administração Cutânea , Sistemas de Liberação de Medicamentos , Humanos , Agulhas
19.
Opt Express ; 27(18): 25420-25427, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510414

RESUMO

In this paper, a fiber-optic temperature sensing system, based on surface plasmon resonance (SPR) and integrated with a smart-phone platform, is proposed and demonstrated. The sensing system is composed of a side-polished-fiber-based SPR sensor, which is illuminated by the LED flash from one end, and the output signals are recorded and processed by the camera and a designed application in the smart-phone. The sensing performance is evaluated by immersing the sensor in distilled water under different temperatures. Experimental results show that the measurement resolution of the proposed temperature sensor can reach 0.83°C in the range from 30 to 70°C, corresponding to a linear correlation coefficient of 0.9798. The low-cost and portable fiber optic SPR sensor based on a smart-phone platform has wide application potentials in the fields of health-care, environmental monitoring, etc.

20.
Sci Rep ; 9(1): 13981, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562361

RESUMO

Electrophoretic display encountered several challenges towards high frame rate applications, such as long response time and high driving voltage. In this study, liquid crystal additive doping can simultaneously increase the response speed by 2.8 times and reduce the driving voltage to half of the initial value of electrophoretic dispersion. The backflow effect of liquid crystal, which induces an inversely electrorheological effect and facilitates the reverse micelles' dielectrophoretic separation, was suggested to be the main reason for the performance improvement. The proposed method is facile and effective which shows promising potential for fast response and low power consumption e-paper applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...