Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764354

RESUMO

Bimetallic sulfides offer high theoretical specific capacitance and good stability as electrode materials due to their diverse redox reactions, larger specific surface areas, and better conductivity. The morphology of the electrode material is an important influencing factor for the electrochemical properties. Herein, a series of ZnCoS electrode materials with different morphologies were prepared by varying the solvent in the solvothermal reaction, and the effects of different microstructures on the electrochemical properties of ZnCoS were investigated. The ratio of water and ethanol in the solvent was controlled to modulate the microstructure of the as-prepared ZnCoS materials. XRD and XPS revealed the physical and chemical structure of the ZnCoS materials. SEM and TEM observations showed that the microstructure of ZnCoS transformed from one-dimensional wires to two-dimensional sheets with increasing amounts of ethanol. The maximum specific capacitance of the as-prepared ZnCoS materials is 6.22 F cm-2 at a current density of 5 mA cm-2, which is superior to that of most previously reported bimetallic sulfides. The enhanced electrochemical performance could be ascribed to its sheet-assembled spherical structure, which not only shortens the path of ion diffusion but also increases the contact between surface active sites and the electrolyte. Moreover, the spherical structure provides numerous void spaces for buffering the volume expansion and penetration of the electrolyte, which would be favorable for electrochemical reactions. Furthermore, the ZnCoS electrodes were coupled with activated carbon (AC) electrodes to build asymmetric supercapacitors (ASCs). The ASC device exhibits a maximum energy density of 0.124 mWh cm-2 under a power density of 2.1 mW cm-2. Moreover, even under a high-power density of 21 mW cm-2, the energy density can still reach 0.055 mWh cm-2.

2.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298755

RESUMO

Dual-ion batteries (DIBs) are a new kind of energy storage device that store energy involving the intercalation of both anions and cations on the cathode and anode simultaneously. They feature high output voltage, low cost, and good safety. Graphite was usually used as the cathode electrode because it could accommodate the intercalation of anions (i.e., PF6-, BF4-, ClO4-) at high cut-off voltages (up to 5.2 V vs. Li+/Li). The alloying-type anode of Si can react with cations and boost an extreme theoretic storage capacity of 4200 mAh g-1. Therefore, it is an efficient method to improve the energy density of DIBs by combining graphite cathodes with high-capacity silicon anodes. However, the huge volume expansion and poor electrical conductivity of Si hinders its practical application. Up to now, there have been only a few reports about exploring Si as an anode in DIBs. Herein, we prepared a strongly coupled silicon and graphene composite (Si@G) anode through in-situ electrostatic self-assembly and a post-annealing reduction process and investigated it as an anode in full DIBs together with home-made expanded graphite (EG) as a fast kinetic cathode. Half-cell tests showed that the as-prepared Si@G anode could retain a maximum specific capacity of 1182.4 mAh g-1 after 100 cycles, whereas the bare Si anode only maintained 435.8 mAh g-1. Moreover, the full Si@G//EG DIBs achieved a high energy density of 367.84 Wh kg-1 at a power density of 855.43 W kg-1. The impressed electrochemical performances could be ascribed to the controlled volume expansion and improved conductivity as well as matched kinetics between the anode and cathode. Thus, this work offers a promising exploration for high energy DIBs.


Assuntos
Grafite , Ligas , Eletrodos , Íons , Silício , Fontes de Energia Elétrica
3.
J Environ Manage ; 326(Pt B): 116829, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36417833

RESUMO

Forest roads are a major source of and transport pathway for eroded sediments in mountainous watersheds. When rills develop on these roads' surfaces, they amplify sediment erosion. Best management practices can decrease sediment erosion, but in order to efficiently implement these practices it is necessary to determine which factors have the most influence on rill development on forest roads. Despite this need, there is scarce literature on rill development on forest roads. To fill this gap in knowledge, based on field survey and multivariate statistical methods including redundancy analysis (RDA) and variation partitioning analysis (VPA), we investigated unpaved forest roads in the Xiangchagou watershed in China and quantified the extent to which various factors influenced rill formation. Specifically, we studied how rill erosion intensity (REI) and rill morphological characteristics (like rill length, mean width and depth, density, and severity of fragmentation) varied along the slope of a forest road. We also introduced the concept of a road's hydrological constituents (its upslope catchment, surface, and cutslopes), and determined how much each constituent contributed to REI. We found that REI and morphological characteristics decreased moving from the upper portion of road segment downward, implying that rills developed more intensely uphill. Additionally, REI increased exponentially with rill width, density, and severity of fragmentation, and increase linearly with length and depth. Conversely, REI decreased exponentially with rill width-depth ratio. These relationships suggest that the morphological characteristics of rills could be used to predict the REI of a given road segment. Finally, we found that the road characteristics that best predicted rill formation included catchment area, cutslope area, and gravel bareness. Correspondingly, the upslope catchment, cutslopes, and road surface contributed 11.56%, 30.83%, and 8.23% of the variation in REI and morphological characteristics. The interaction between upslope catchment and road surface explained 19.89% of the variation. These results suggest that when best management practices are implemented to decrease erosion caused by forest roads in mountainous watersheds, they should integrate these hydrological constituents of a road.


Assuntos
Florestas , Sedimentos Geológicos , China
4.
Biotechnol Lett ; 44(12): 1415-1429, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36315298

RESUMO

In order to figure out the effect of organic fertilizers with different carbon-nitrogen (C/N) ratios on the soil improvement and the healthy cultivation, the pot experiment method was used to study effects on the physical and chemical properties and the bacterial community structure of sandy loam soil using five treatments of chemical fertilizer application with the C/N ratios of 15 (CN15), 20 (CN20), 25 (CN25), 30 (CN30) and the control (CK) respectively. Results show that the organic materials with different C/N ratios significantly improve the soil porosity and water content, which all show a linear change rule with the C/N ratio. It can also significantly increase the soil total carbon, total nitrogen, soil C/N ratio, soil microbial biomass carbon, microbial biomass nitrogen and microbial biomass C/N ratio. Among them, CN30 significantly increases the soil total carbon and C/N ratio, which are 5.34-24.13% and 8.87-30.15% respectively compared with other treatments. It can be also found that the dominant flora (at the phylum level) of each treatment are Actinobacteria, Proteobacteria and Chlorobi. The CN30 treatment presents the most obvious improvement in the diversity and richness of the soil bacterial community and is more conducive to the growth and reproduction of Proteobacteria and Firmicutes. The correlation analysis shows that Ctotal/Ntotal and Cmic/Nmic are the most important environmental factors affecting the soil physical and chemical properties and their correlation with the bacterial communities. The higher C/N ratio of organic materials results in a more significant improvement of the soil physical and chemical properties. This study provides a new theoretical basis for the soil health cultivation technology.


Assuntos
Nitrogênio , Solo , Solo/química , Nitrogênio/análise , Carbono/análise , Microbiologia do Solo , Fertilizantes/análise , Bactérias
5.
Chemosphere ; 294: 133710, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35074326

RESUMO

The usage of fertilizer with high nitrogen content in many countries, as well as its enormous surplus, has a negative impact on the soil ecological environment in agricultural system. This consumption of nitrogen fertilizer can be minimized by applying biochar to maintain the sufficient supply of nitrogen as nutrient to the near-root zone. This study investigated the effects of various amounts of biochar application (450, 900, 1350, and 1800 kg/hm2) and reduction of nitrogen fertilizer amount (10, 15, 20, and 25%) on the nutrients and microorganism community structure in rhizosphere growing tobacco plant. The microorganism community was found essential in improving nitrogen retention. Compared with conventional treatment, an application of biochar in rhizosphere soil increased the content of soil available phosphorus, organic matter and total nitrogen by 21.47%, 26.34%, and 9.52%, respectively. It also increased the abundance of microorganisms that are capable of degrading and utilizing organic matter and cellulose, such as Actinobacteria and Acidobacteria. The relative abundance of Chloroflexi was also increased by 49.67-78.61%, and the Acidobacteria increased by 14.79-39.13%. Overall, the application of biochar with reduced nitrogen fertilizer amount can regulate the rhizosphere microecological environment of tobacco plants and their microbial population structure, thereby promoting soil health for tobacco plant growth while reducing soil acidification and environmental pollution caused by excessive nitrogen fertilizer.


Assuntos
Microbiota , Rizosfera , Carvão Vegetal , Fertilizantes/análise , Nitrogênio/análise , Solo , Microbiologia do Solo
6.
Sci Total Environ ; 802: 149835, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461468

RESUMO

Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.


Assuntos
Carbono , Solo , Suplementos Nutricionais , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Amido , Açúcares , Nicotiana
7.
Sci Rep ; 11(1): 21991, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754009

RESUMO

In order to explore the effects of biochar on root system and growth characteristics of flue-tobacco, three years of field experiments were conducted to study the influence of different biochar application levels [600 (T1), 1200 (T2), 1800(T3), 2400 (T4), 3000 (T5) kg/ha] and no fertilizer (CK) on the root physiological indexes and growth index of tobacco. Compared with local conventional fertilization, the application rate of N fertilizer in each treatment (except for control) was reduced by 40% to analyze the effects of different amount of biochar on the physiological indexes of tobacco roots and leaf photosynthesis during flourishing. The results showed that tobacco plants' root development status in the flourishing period was consistent with the photosynthetic physiological indexes, chlorophyll content, and leaf-area coefficient. Compared with the control, the application of biochar could increase the root vigor by 177.8%. Biochar improved the roots, increasing the total root area by 91.35% and the number of root tips by 100.9%. Meanwhile, biochar increased the net photosynthetic rate of tobacco leaves by 77.3% and the total tobacco biomass by 72.5%. Studies have shown that biochar can promote the development of tobacco roots, and then enhance the photosynthesis of leaves, so that tobacco plants can grow healthily, which is conducive to the tobacco production and the cultivation of soil.


Assuntos
Carvão Vegetal , Nicotiana/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Clorofila/metabolismo , Fertilizantes , Nitrogênio , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Nicotiana/metabolismo , Nicotiana/fisiologia
8.
Front Oncol ; 11: 660629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796471

RESUMO

OBJECTIVE: To investigate microvascular invasion (MVI) of HCC through a noninvasive multi-disciplinary team (MDT)-like radiomics fusion model on dynamic contrast enhanced (DCE) computed tomography (CT). METHODS: This retrospective study included 111 patients with pathologically proven hepatocellular carcinoma, which comprised 57 MVI-positive and 54 MVI-negative patients. Target volume of interest (VOI) was delineated on four DCE CT phases. The volume of tumor core (V tc ) and seven peripheral tumor regions (V pt , with varying distances of 2, 4, 6, 8, 10, 12, and 14 mm to tumor margin) were obtained. Radiomics features extracted from different combinations of phase(s) and VOI(s) were cross-validated by 150 classification models. The best phase and VOI (or combinations) were determined. The top predictive models were ranked and screened by cross-validation on the training/validation set. The model fusion, a procedure analogous to multidisciplinary consultation, was performed on the top-3 models to generate a final model, which was validated on an independent testing set. RESULTS: Image features extracted from V tc +V pt(12mm) in the portal venous phase (PVP) showed dominant predictive performances. The top ranked features from V tc +V pt(12mm) in PVP included one gray level size zone matrix (GLSZM)-based feature and four first-order based features. Model fusion outperformed a single model in MVI prediction. The weighted fusion method achieved the best predictive performance with an AUC of 0.81, accuracy of 78.3%, sensitivity of 81.8%, and specificity of 75% on the independent testing set. CONCLUSION: Image features extracted from the PVP with V tc +V pt(12mm) are the most reliable features indicative of MVI. The MDT-like radiomics fusion model is a promising tool to generate accurate and reproducible results in MVI status prediction in HCC.

9.
Huan Jing Ke Xue ; 42(1): 422-432, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372495

RESUMO

Biochar-based fertilizers can improve the mineralization of carbon and nitrogen in soil and enhance the soil micro-ecological environment due to particular physical and chemical properties. It is of great significance to explore the underlying mechanism of biochar-based fertilizer in the regulation of soil microorganisms and soil enzyme activity to improve soil quality. Field experiments were conducted to investigate the effects of different biochar-based fertilizer rates[0 (CK2), 0.6 (T1), 0.9 (T2), 1.2 (T3), and 1.5 (T4) t·hm-2]on soil nutrients, soil enzyme activity, and bacterial community structure. The results showed that with the application of biochar-based fertilizer, soil bulk density decreased, while the pH value, available P, available K, organic matter content, and the C/N ratio increased by 0.32%-5.83%, 14.09%-23.16%, 0%-38.70%, 7.49%-14.16%, and 4.06%-10.13%, respectively, compared to that of the CK2 treatment. With increasing rates of biochar-based fertilizer, the enzyme activity first increased and then decreased. Invertase (INV), urease (URE), catalase (CAT), and neutral phosphatase (NPH) activity under the application of biochar-based fertilizer were 63.73%-166.37%, 117.52%-174.03%, 12.98%-23.59%, and 60.84%-119.71% higher than that of CK2, respectively. The corresponding bacterial diversity was significantly improved, especially with regard to the increase in the abundance of growth promoting bacteria, such as Gemmatimonadetes and Proteobacteria, and decreased the abundance of Acidobacteria and Actinobacteria. The correlation analysis showed that soil C/N ratio was the key factor affecting soil enzyme activity, and there was a significant positive correlation between soil enzyme activity and bacterial diversity. There were significantly positive correlations among the activities of the above four soil enzymes and the relative abundance of Gemmatimonadetes (P<0.01), with CAT being the key factor affecting the bacterial community structure. This study revealed a relationship between soil enzyme activity and microbial colonies, which provides a theoretical basis and mechanism for applying biochar to regulate the soil enzyme and micro-ecological environment.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , Carvão Vegetal , Fertilizantes
10.
Biotechnol Lett ; 43(3): 655-666, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33174145

RESUMO

Excessive application of chemical fertilizer and continuous cropping in plastic greenhouse resulted in soil quality decline. The decrease of soil C/N ratio and the imbalance of soil carbon pool structure have brought new challenges to soil health, crop yield and sustainable agricultural development. OBJECTIVES: The experiment was set up to explore the effect of modified biochar on soil bacterial community structure, and the correlation between soil environmental factors and bacterial community structure changes. Based on the plot experiment in the field, the effect of modified biochar was studied via high-throughput MiSeq sequencing. RESULTS: Compared with the control (CK), the modified biochar (T) significantly increased soil water content, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) content and the ratio of MBC and MBN by 7.92%, 24.58%, 2.07% and 18.95%. Diversity index analysis showed that the application of modified biochar significantly increased the Shannon index, ACE index and Chao1 index of the bacterial community by 3.05%, 5.07% and 5.24%. Compared with the control, the modified biochar decreased the relative abundance of Actinobacteriota and Chloroflex by 6.81% and 2.19%, and increased the relative abundance of Proteobacteria and Acidobacteriota by 7.34% and 12.52%. Correlation analysis shows that soil bulk density and water content may be important related factors that affect bacterial community structure. CONCLUSIONS: This study provides a theoretical basis for the directional control of modified biochar in the soil microecological environment in plastic greenhouse, which is conducive to healthy and sustainable farming.


Assuntos
Bactérias/efeitos dos fármacos , Carvão Vegetal/farmacologia , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Biomassa , Carbono/análise , Carbono/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química
11.
Sci Total Environ ; 753: 141645, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207475

RESUMO

Most studies on the effects of biochar and fertilizer on soil carbon (C) and nitrogen (N) mineralization, and microbial C and N content, are restricted to a single soil type, limiting our understanding of the interactions between these factors and microbial functions. To address this paucity in knowledge, we undertook a 3-year experiment using four contrasting soils to assess the role of peanut shell biochar and fertilizer on C and N mineralization, microbial C and N, and N stoichiometry. Across all four soils, biochar significantly (P < 0.05) increased soil carbon mineralization (Cmin) and nitrogen mineralization (Nmin) over three years compared to fertilizer and the control. Biochar also increased total C (Csoil) across the four soils in year 1, with the Fluvisol recording greater total C in year 2 and Phaeozem having greater total C in year 3. Biochar resulted in a higher microbial biomass C (Cmic), total N (Nsoil) and microbial biomass N (Nmic); the degree of change was closely related to Csoil and Nsoil. There was a positive correlation between Cmic:Nmic and Csoil:Nsoil; while Csoil and Cmic increased following amendment with biochar, which reduced the soil C and N stoichiometric imbalance (Nimb) caused by the increase in the C to N ratio. However, fertilizer exacerbated the imbalance of soil C and N stoichiometry. Fertilizer also reduced the Csoil:Nsoil and Cmic:Nmic ratios. Soil pH had a positive correlation with Csoil, Cmic, Nmic, Cmin, Nmin, Csoil:Nsoil, Cmic:Nmic, and biochar increases this correlation. The soil pH was negatively correlated with Cimb:Nimb and Nsoil. Fertilizer was positively correlated Cimb:Nimb and Nsoil. In contrast, fertilizer N application lowered microbial biomass C:N. We conclude that biochar reduces the imbalance of soil C and N stoichiometry, whereas fertilizer increased this imbalance. Biochar had a greater impact on C and N in soils with a lower pH.


Assuntos
Carbono , Nitrogênio , Biomassa , Carvão Vegetal , Fertilizantes , Nitrogênio/análise , Solo , Microbiologia do Solo
12.
Environ Res ; 192: 110273, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002505

RESUMO

Pot experiments were conducted to investigate the influence of biochar addition and the mechanisms that alleviate Cd stress in the growth of tobacco plant. Cadmium showed an inhibitory effect on tobacco growth at different post-transplantation times, and this increased with the increase in soil Cd concentration. The growth index decreased by more than 10%, and the photosynthetic pigment and photosynthetic characteristics of the tobacco leaf were significantly reduced, and the antioxidant enzyme activity was enhanced. Application of biochar effectively alleviated the inhibitory effect of Cd on tobacco growth, and the alleviation effect of treatments is more significant to the plants with a higher Cd concentration. The contents of chlorophyll a, chlorophyll b, and carotenoids in the leaves of tobacco plants treated with biochar increased by 9.99%, 12.58%, and 10.32%, respectively, after 60 days of transplantation. The photosynthetic characteristics index of the net photosynthetic rate increased by 11.48%, stomatal conductance increased by 11.44%, and intercellular carbon dioxide concentration decreased to 0.92. Based on the treatments, during the growth period, the antioxidant enzyme activities of tobacco leaves comprising catalase, peroxidase, superoxide dismutase, and malondialdehyde increased by 7.62%, 10.41%, 10.58%, and 12.57%, respectively, after the application of biochar. Our results show that biochar containing functional groups can effectively reduce the effect of Cd stress by intensifying the adsorption or passivation of Cd in the soil, thereby, significantly reducing the Cd content in plant leaves, and providing a theoretical basis and method to alleviate soil Cd pollution and effect soil remediation.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Carvão Vegetal , Clorofila A , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Nicotiana
13.
Cancer Manag Res ; 12: 11751-11760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239912

RESUMO

BACKGROUND: Encapsulated papillary carcinoma (EPC) of the breast is a rare entity. EPC can be underappreciated on percutaneous biopsy, which may require additional procedures if invasion is not recognized preoperatively. We aimed to investigate the magnetic resonance imaging (MRI) phenotypes correlated with preoperative pathological risk stratification for clinical guidance. MATERIALS AND METHODS: The preoperative MRI scans of 30 patients diagnosed with 36 EPCs in multiple centers between August 2015 and February 2020 were reviewed by two breast radiologists. According to the WHO classification published in 2019, EPCs were classified into two pathological subtypes: encapsulated papillary carcinoma and encapsulated papillary carcinoma with invasion. Clinicopathological analysis of the two subtypes and MR feature analysis were performed. RESULTS: Evaluation of the MRI phenotypes and pathological subtype information revealed that not circumscribed (P=0.04) was more common in EPCs with invasion than in EPCs. There was a significant difference in the age of patients (P=0.05), and the risk increased with age. The maximum diameter of the tumor increased with tumor risk, but there was no significant difference (P=0.36). Nearly half of the EPC with invasion patients showed hyperintensity on T1WI (P=0.19). A total of 63.6% of the EPC with invasion group showed non-mass enhancement surrounding (P=0.85). In addition, 29 patients (96.7%) had no axillary lymph node metastasis, and only one patient with EPC with invasion had axillary lymph node metastasis. Further pathological information analysis of EPCs showed that higher Ki-67 levels were more common in patients with EPCs with invasion (P=0.04). A total of 29 patients (96.7%) had the luminal phenotype, and one patient with EPC with invasion had the Her-2-positive phenotype. CONCLUSION: The margin, age and Ki-67 level were the key features for EPC risk stratification. In addition, these MRI signs, including a larger tumor, non-mass enhancement surrounding and axillary lymph node metastasis, may be suggestive of a high-risk stratification. Therefore, MRI phenotypes may provide additional information for the risk stratification of EPCs.

14.
Environ Sci Pollut Res Int ; 27(30): 37432-37443, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32681332

RESUMO

Biochar was increasingly used in agriculture soil amendment and has received widespread attention due to its potential to improve soil micro-ecological environment and crop growth. The raw material of the biochar used in this study is peanut shell, which is mixed with other organics and minerals to become a mineral-enhanced biochar under heating conditions (220 °C). When the third season crop is finished, we evaluated black soil physicochemical properties, microbial communities, and crop growth in long-term agricultural trials. Four treatments were set up: no amendment (control CK), nitrogen fertilizer only (70 kg ha-1 N), enhanced biochar only (5 t ha-1 B), and nitrogen fertilizer (70 kg ha-1) + enhanced biochar (5 t ha-1) (NB). The enhanced biochar promotes crop growth and increased the richness of the bacterial community, while reducing the richness of the fungal community. Nitrogen fertilizer + enhanced biochar increased soil microbial biomass carbon, nitrate nitrogen, and ammonium nitrogen by 43.75, 7.25, and 19.28%. In addition, we found changes in bacterial community were closely related to soil organic carbon, while changes in fungal community structure were closely related to soil carbon to nitrogen ratio. And the soil organic carbon and soil carbon to nitrogen ratio of biochar treatment were increased by 5.64 and 6.25% compared with fertilizer treatment, respectively. We concluded that enhanced biochar improved the soil more effectively and made the soil more conducive to crop growth. Regulating the microbial community by improving the physicochemical properties of soil was an important way to improve the stability and condition of the soil system with biochar. An enhanced biochar was of great significance for circular development of agriculture and soil improvement in Northeast China.


Assuntos
Carbono , Solo , Agricultura , Carvão Vegetal , China , Fertilizantes/análise , Nitrogênio/análise , Microbiologia do Solo
15.
Curr Microbiol ; 77(6): 931-942, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31982968

RESUMO

The soil organic carbon is associated with the plant quality and the microbial community structure. In the present study, carbon fertilizers were applied to paddy soil to elucidate the relationship between soil carbon and neutral aroma substances in both tobacco and soil microbiome by transcriptome sequencing and 16S rDNA-based analysis, respectively. Our results showed that (1) the increase in soil carbon content was closely correlated with the abundance of microorganisms belonging to two classes (which could potentially affect tobacco plants), namely Gammaproteobacteria and Chloroflexia, (2) soil carbon apparently affected tobacco neutral aroma substances, and (3) soil carbon improved neutral aroma substances by affecting the transcriptional processes of sesquiterpenoid and chlorophyll biosyntheses. These results suggest that increased soil carbon-especially active organic carbon-resulted in desirable improvements in aroma substances in tobacco leaves.


Assuntos
Carbono/farmacologia , Microbiota/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Odorantes/análise , Solo/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Carbono/análise , Fertilizantes/análise , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Microbiologia do Solo , Nicotiana/química , Transcriptoma/efeitos dos fármacos
16.
PLoS One ; 14(10): e0224556, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671156

RESUMO

The application of biochar is one of the most useful methods for improving soil quality, which is of the utmost significance for the continuous production of crops. As there are no conclusive studies on the specific effects of biochar application on tobacco quality, this study aimed to improve the yield and quality of tobacco as a model crop for economic and genetic research in southern China, by such application. We used transcriptome sequencing to reveal the effects of applied biochar on tobacco development before and after topping. Our results showed that topping affected carbon and nitrogen metabolism, photosynthesis and secondary metabolism in the tobacco plants, while straw biochar-application to the soil resulted in amino acid and lipid synthesis; additionally, it affected secondary metabolism of the tobacco plants through carbon restoration and hormonal action, before and after topping. In addition to the new insights into the impact of biochar on crops, our findings provide a basis for biochar application measures in tobacco and other crops.


Assuntos
Agricultura/métodos , Carvão Vegetal/metabolismo , Nicotiana/genética , Carbono/metabolismo , China , Produtos Agrícolas/genética , Fotossíntese , Solo/química , Solanaceae/genética , Transcriptoma/genética , Sequenciamento do Exoma
17.
PeerJ ; 7: e7576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565561

RESUMO

BACKGROUND: The increasing demand for food production has resulted in the use of large quantities of chemical fertilizers. This has created major environmental problems, such as increased ammonia volatilization, N2O emission, and nitrogen (N) leaching from agricultural soil. In particular, the utilization rate of N fertilizer is low in subtropical southern parts of China due to high rainfall. This causes not only large financial losses in agriculture, but also serious environmental pollution. METHODS: In this study, 16S rDNA-based analysis and static-chamber gas chromatography were used to elucidate the effects of continuous straw biochar application on the N pool and bacteria environment in two typical soil types, purple and paddy soils, in southern China. RESULTS: Straw biochar application (1) improved the soil N pool in both rhizosphere and non-rhizosphere soils; (2) significantly reduced the emission of N2O, with no difference in emission between 1 and 2 years of application; (3) increased the abundance of N-processing bacteria in the soil and altered the bacterial community structure; and (4) improved the tobacco yield and N use efficiency in paddy soil. These findings suggest that, in southern China, the application of straw biochar can promote N transformation in purple and paddy soils and reduce the emission of the greenhouse gas N2O.

18.
R Soc Open Sci ; 6(7): 181499, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417689

RESUMO

Soil carbon reserves are the largest terrestrial carbon pools. Common agricultural practices, such as high fertilization rates and intensive crop rotation, have led to global-scale environmental changes, including decreased soil organic matter, lower carbon/nitrogen ratios and disruption of soil carbon pools. These changes have resulted in a decrease in soil microbial activity, severe reduction in soil fertility and transformation of soil nutrients, thereby causing soil nutrient imbalance, which seriously affects crop production. In this study, 16S rDNA-based analysis and static chamber-gas chromatography were used to elucidate the effects of continuous application of straw biochar on soil carbon pools and the soil microbial environments of two typical soil types (purple and paddy soils) in southern China. Application of biochar (1) improved the soil carbon pool and its activity, (2) significantly promoted the release of soil CO2 and (3) improved the soil carbon environment. Soil carbon content was closely correlated with the abundance of organisms belonging to two orders, Lactobacillales and Bacteroidales, and, more specifically, to the genus Lactococcus. These results suggest that biochar affects the soil carbon environment and soil microorganism abundance, which in turn may improve the soil carbon pool.

19.
Sci Rep ; 9(1): 6168, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992508

RESUMO

The application of fertilisers incorporated with plant residues improves nutrient availability in soils, which shifts the microbial community structure and favours plant growth. To understand the impact of wheat straw compost fertiliser on soil properties and microbial community structure, tobacco planting soils were treated with four different fertilisers using varied amounts of straw compost fertiliser and a no fertiliser control (CK). Results showed that different fertilisers affected available soil nutrient contents differently. Treatment of tobacco soil with application of combined chemical fertiliser/wheat straw compost led to improved soil chemical properties, and increased soil organic matter and available phosphorus and potassium content. Treatment with FT1 200 kg/mu straw was found to be superior in improving soil fertility. Metagenomic DNA sequencing revealed that different fertiliser treatments resulted in changes in the microbial community composition. In soil treated with FT2 300 kg/mu straw for 60 days, the predominant bacterial phyla were Proteobacteria, Actinobacteria, and Verrucomicrobia, whereas Cyanobacteria, Basidiomycota, and Chlorophyta were found in high abundance in soil samples treated with FT1 200 kg/mu straw for 30 days. Functional annotation of metagenomic sequences revealed that genes involved in metabolic pathways were among the most abundant type. PCoA analysis clearly separated the samples containing straw compost fertiliser and chemical fertiliser. A significant correlation between soil properties and the dominant phyla was identified.


Assuntos
Compostagem , Fertilizantes , Microbiologia do Solo , Solo/química , Triticum/química , Bactérias/genética , Bactérias/isolamento & purificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Fertilizantes/análise , Metagenoma , Microbiota , Nicotiana/crescimento & desenvolvimento
20.
Huan Jing Ke Xue ; 40(2): 915-923, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628360

RESUMO

A five year (2013-2017) experiment was conducted to explore the effects of biochar application on the dynamic changes in soil respiration, soil water, and heat factors under four treatments:CK (without biochar), T1 (with 1.5 t·hm-2biochar), T2 (with 15 t·hm-2biochar), and T3 (with 45 t·hm-2biochar). The results showed that:① the soil respiration rate in the growing season of flue-cured tobacco was significantly reduced by 25.89% under the five year application of medium-dose biochar (T2:15 t·hm-2) in soil, while it was significantly increased by 21.48% when the applied dose increased to 45 t·hm-2(T3) (P<0.05). ② The long-term application of medium-dose biochar in the soil significantly reduced the soil heterotrophic respiration and autotrophic respiration rates by 29.80% and 28.75%, respectively. Meanwhile, the application of high-dose biochar (T3:45 t·hm-2) significantly increased the heterotrophic respiration rate by 28.88%. In addition, the application of low-dose biochar (T1:1.5 t·hm-2) and medium-dose biochar significantly increased the proportion of autotrophic respiration, whereas the high-dose biochar application significantly increased the proportion of heterotrophic respiration (P<0.05). ③ The addition of low-dose biochar to the soil significantly reduced the soil temperature at 5 cm in the growing season of flue-cured tobacco, while the high-dose application significantly reduced the soil humidity. There was a significant index correlation between soil respiration and soil temperature at 5 cm but no significant correlation with soil humidity at 5 cm (P<0.05). Ultimately, the application of low-dose biochar for five years in soil had no effect on soil respiration, and the application of the proper amount of biochar had a carbon sequestration effect. Additionally, large-dose biochar application may be counterproductive. It is recommended that the application range of biochar should be controlled within 15 t·hm-2.


Assuntos
Carvão Vegetal , Nicotiana/crescimento & desenvolvimento , Solo/química , Sequestro de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...