Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(29): 12921-12932, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38965053

RESUMO

Marine microalgae serve as an aquaculture bait. To enhance algal cell growth and breeding profits, high-intensity light conditions are standard for cultivating bait microalgae, potentially altering microalgal metabolite production. This research revealed that Thalassiosira pseudonana, when subjected to high-intensity light conditions, accumulated significant quantities of retinal (RAL) that transferred through the food chain and transformed into all-trans retinoic acid (atRA) in marine medaka. The study further explored the toxic effects on individual fish and specific tissues, as well as the mechanisms behind this toxicity. The accumulation of atRA in the liver, intestine, and spinal column resulted in structural damage and tissue inflammation, as well as oxidative stress. It also down-regulated the gene transcription levels of key pathways involved in immune function and growth. Furthermore, it disrupted the homeostasis of the intestinal microbial communities. The implications for wildlife and human health, which are influenced by the regulation of microalgal metabolite accumulation and their transfer via the food chain, require further investigation and could hold broader significance.


Assuntos
Cadeia Alimentar , Fígado , Oryzias , Animais , Oryzias/metabolismo , Fígado/metabolismo , Retinoides/metabolismo , Intestinos , Microalgas , Aquicultura
2.
Front Microbiol ; 14: 1239323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731918

RESUMO

Lead (Pb) is a hazardous pollutant in water environments that can cause significant damage to aquatic animals and humans. In this study, crucian carp (Carassius auratus) were exposed to waterborne Pb for 96 h; then, histopathological analysis, quantitative qPCR analysis, and 16S high-throughput sequencing were performed to explore the effects of Pb on intestinal bioaccumulation, structural damage, oxidative stress, immune response, and microbiota imbalance of C. auratus. After Pb exposure, the intestinal morphology was obviously damaged, including significantly increasing the thickness of the intestinal wall and the number of goblet cells and reducing the depth of intestinal crypts. Pb exposure reduced the mRNA expressions of Claudin-7 and villin-1 while significantly elevated the level of GST, GSH, CAT, IL-8, IL-10, IL-1, and TNF-α. Furthermore, 16S rRNA analysis showed that the Shannon and Simpson indices decreased at 48 h after Pb exposure, and the abundance of pathogenic bacteria (Erysipelotrichaceae, Weeksellaceae, and Vibrionaceae) increased after Pb exposure. In addition, the correlation network analysis found that Proteobacteria were negatively correlated with Firmicutes and positively correlated with Bacteroidetes. Functional prediction analysis of bacteria speculated that the change in intestinal microbiota led to the PPAR signaling pathway and peroxisome function of the intestine of crucian carp was increased, while the immune system and membrane transport function were decreased. Finally, canonical correlation analysis (CCA) found that there were correlations between the intestinal microbiota, morphology, antioxidant factors, and immune factors of crucian carp after Pb exposure. Taken together, our results demonstrated that intestinal flora dysbiosis, morphological disruption, oxidative stress, and immune injury are involved in the toxic damage of Pb exposure to the intestinal structure and function of crucian carp. Meanwhile, Pb exposure rapidly increased the abundance of pathogenic bacteria, leading to intestinal disorders, further aggravating the damage of Pb to intestinal structure and function. These findings provide us a basis for the link between gut microbiome changes and heavy metal toxicity, and gut microbiota can be used as biomarkers for the evaluation of heavy metal pollution in future.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36108998

RESUMO

Lead (Pb) is one of the most common trace metals in water, and its high concentration in the environment can cause harm to aquatic animals and humans. In the present study, the effects of Pb exposure (3.84 mg/kg) on the morphology, digestive enzyme activity, immune function and microbiota structure of silver carp (Hypophthalmichthys molitrix) intestines within 96 h were detected. Moreover, the correlation between them was analyzed. The results showed that Pb exposure on the one hand severely impaired the intestinal morphology, including significantly shortening the intestinal villi's length, increasing the goblet cells' number, causing the intestinal leukocyte infiltration, and thickening the intestinal wall abnormally, on the other hand, increasing the activity of intestinal digestive enzyme (trypsin and lipase). In addition, the mRNA expressions of structure-related genes (Claudin-7 and villin-1) were down-regulated, and the immune factors genes (IL-8, IL-10 and TNF-α) were up-regulated after Pb exposure. Furthermore, data of the MiSeq sequencing showed that the abundance of membrane transport, immune system function and digestive system of silver carp intestinal microbiota all decreased, while cellular antigens increased. Finally, the canonical correlation analysis (CCA) showed that there were correlations between silver carp's intestinal microbiota and intestinal morphology and immune factors. In conclusion, it is speculated that the entry of Pb into the intestine leads the microbiota dysbiosis, affects the intestinal immunity and digestive function, and further damages the intestinal barrier of silver carp.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Carpas/metabolismo , Claudinas , Disbiose/induzido quimicamente , Disbiose/veterinária , Humanos , Imunidade , Interleucina-10 , Interleucina-8 , Intestinos , Chumbo/toxicidade , Lipase , RNA Mensageiro/metabolismo , Tripsina , Fator de Necrose Tumoral alfa , Água
4.
Ecotoxicology ; 30(5): 885-898, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33830385

RESUMO

The heavy metal lead (Pb) is a contaminant widely distributed in the food chain. In this study, eight weeks of feeding containing Garlic (Allium sativum) or Fu-ling (Poria cocos) or both, markedly increased the growth index, enzyme activity, and serum index and significantly decreased muscle Pb level in grass carp (Ctenopharyngodon idella). Upon Pb exposure, the feeding Garlic or Fu-ling or both possessed the similar effects on improving the function of the antioxidant system and chelating ability. Further, the gene expressions of metal binding proteins (TF and MT-2) in the liver of the three experimental groups were significantly higher than those of the control group, which were all highly up-regulated after Pb exposure. At the same time, the activities of antioxidant enzymes (SOD and CAT) and the content of non-enzymatic substance (GSH) in the liver of the Garlic group, Fu-ling group and mixed group were stable compared to the control group after Pb exposure. Moreover, the reduction of Pb toxicity was manifested by the decrease of Pb content in the muscle, and the stable expression of heat stress proteins (HSP30 and HSP60) and immune-related genes (TNF-α and IL-1ß). Taken together, the study preliminarily shows that the Garlic and Fu-ling play a role in mitigating the toxicity of Pb in grass carp.


Assuntos
Carpas , Doenças dos Peixes , Alho , Wolfiporia , Ração Animal/análise , Animais , Antioxidantes , Mecanismos de Defesa , Dieta , Suplementos Nutricionais , Proteínas de Peixes , Chumbo/toxicidade , Fígado , Transdução de Sinais
5.
J Fish Dis ; 44(5): 613-625, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33220160

RESUMO

The major histocompatibility complex (MHC) genes play a key role in immune response in vertebrates. In this study, an MHC I alpha homolog gene (PfMHC Ⅰα) from pufferfish (Takifugu obscurus) was identified and its subcellular localization and expression patterns of PfMHC Ⅰα after challenge in vivo and in vitro were analysed. The open reading frame of PfMHC Ⅰα was 1,089 bp in length, encoding 362 aa. The immunofluorescence result revealed that PfMHC Ⅰα was presented on the membrane of lymphocytes. qRT-PCR analysis indicated that PfMHC Ⅰα was expressed in all examined tissues, with the highest expression in skin, followed by the expression in gills and whole blood. After challenge of Aeromonas hydrophila or polyinosinic: polycytidylic acid (Poly I:C) in vitro, the expression levels of PfMHC Ⅰα on pufferfish kidney lymphocytes were significantly up-regulated, with the highest expression level at 48 hr post-challenge. After infection with A. hydrophila or Poly I:C in vivo, the expression levels of PfMHC Ⅰα in the skin, whole blood and kidneys were significantly up-regulated. Taken together, it is speculated that PfMHC Ⅰα associates with resistance to both intracellular and extracellular antigens and plays an important role in the host response against pathogen infection in pufferfish.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Imunidade/genética , Takifugu/genética , Takifugu/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...