Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Cardiovasc Med ; 11: 1381408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646150

RESUMO

Objective: Anticoagulation is crucial for patients hospitalized with coronavirus disease 2019 (COVID-19) due to the high risk of venous thromboembolism (VTE). However, the optimal anticoagulation regimen needs further exploration. Therefore, we evaluated the efficacy and safety of diverse anticoagulation dosage dosages for COVID-19. Methods: An updated meta-analysis was performed to assess the effect of thromboprophylaxis (standard, intermediate, and therapeutic dose) on the incidence of VTE, mortality and major bleeding among COVID-19 patients. Literature was searched via PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure (CNKI) database. The odds ratio (OR) and 95% confidence interval (CI) were calculated for effect estimates. Results: Nineteen studies involving 25,289 participants without VTE history were included. The mean age of patients was 59.3 years old. About 50.96% were admitted to the intensive care unit. In the pooled analysis, both therapeutic-dose and intermediate-dose anticoagulation did not have a significant advantage in reducing VTE risk over standard dosage (OR = 1.09, 95% CI: 0.58-2.02, and OR = 0.89, 95% CI: 0.70-1.12, respectively). Similarly, all-cause mortality was not further decreased in either therapeutic-dose group (OR = 1.12, 95% CI: 0.75-1.67) or intermediate-dose group (OR = 1.34, 95% CI: 0.83-2.17). While the major bleeding risk was significantly elevated in the therapeutic-dose group (OR = 2.59, 95%CI: 1.87-3.57) as compared with the standard-dose regimen. Compared with intermediate dosage, therapeutic anticoagulation did not reduce consequent VTE risk (OR = 0.85, 95% CI: 0.52-1.38) and all-cause mortality (OR = 0.84, 95% CI: 0.60-1.17), but significantly increased major bleeding rate (OR = 2.42, 95% CI: 1.58-3.70). In subgroup analysis of patients older than 65 years, therapeutic anticoagulation significantly lowered the incidence of VTE in comparation comparison with standard thromboprophylaxis, however, at the cost of elevated risk of major bleeding. Conclusion: Our results indicated that for most hospitalized patients with COVID-19, standard-dose prophylactic anticoagulation might be the optimal choice. For elderly patients at low risk of bleeding, therapeutic-dose anticoagulation could further reduce VTE risk and should be considered especially when there were other strong risk factors of VTE during hospital stay. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO, identifier, CRD42023388429.

2.
BMC Infect Dis ; 24(1): 324, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493138

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is frequntly accompanied by venous thromboembolism (VTE), and its mechanism may be related to the abnormal inflammation and immune status of COVID-19 patients. It has been proved that interleukin-6 (IL-6), ferritin and lactate dehydrogenase (LDH) may play an important role in the occurrence of VTE in COVID-19 infection. But whether they can server as predictors for VTE in COVID-19 is still unclear. In this study, we performed a systematic review and meta-analysis to compare IL-6, ferritin and LDH in VTE and non-VTE COVID-19 patients in order to shed light on the prevention and treatment of VTE. METHODS: Related literatures were searched in PubMed, Embase, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), WANGFANG. COVID-19 patients were divided into VTE group and non-VTE group. Meta-analysis was then conducted to compare levels of IL-6, ferritin and LDH between the two groups. RESULTS: We finally included and analyzed 17 literatures from January 2019 to October 2022. There was a total of 7,035 COVID-19 patients, with a weighted mean age of 60.01 years. Males accounted for 62.64% and 61.34% patients were in intensive care unit (ICU). Weighted mean difference (WMD) of IL-6, ferritin and LDH was 31.15 (95% CI: 9.82, 52.49), 257.02 (95% CI: 51.70, 462.33) and 41.79 (95% CI: -19.38, 102.96), respectively. The above results indicated that than compared with non-VTE group, VTE group had significantly higher levels of IL-6 and ferritin but similar LDH. CONCLUSION: This systematic review and meta-analysis pointed out that elevated levels of IL-6 and ferritin were significantly possitive associated with VTE, thus could be used as biological predictive indicators of VTE among COVID-19 patients. However, no association was found between level of LDH and VTE. Therefore, close monitoring of changes in IL-6 and ferritin concentrations is of great value in assisting clinicans to rapidly identify thrombotic complications among COVID-19 patients, hence facilitating the timely effective managment. Further studies are required in terms of the clinical role of cytokines in the occurrence of VTE among COVID-19 infection, with more reliable systematic controls and interventional trials.


Assuntos
COVID-19 , Tromboembolia Venosa , Masculino , Humanos , Pessoa de Meia-Idade , COVID-19/complicações , Interleucina-6 , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/prevenção & controle , Ferritinas , L-Lactato Desidrogenase
3.
Phys Chem Chem Phys ; 26(2): 1255-1266, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38100096

RESUMO

For dry reforming of methane, the active metal particle size of the catalyst has a significant effect on both the reaction activity and the resistance to carbon deposition. In this study, nickel particles of different sizes (Ni13, Ni25, and Ni37) supported on the MgO(100) slab are used to study the mechanism of CH4 activation and carbon growth based on DFT theoretical calculations. According to the results, the energy of adsorption for reaction intermediates changes depending on the size of the active metal. The adsorption process of CH3, CH2, CH and C on Ni25/MgO has a maximum exothermic value. Furthermore, the energy barriers of CH4 four-step dehydrogenation are lowest on Ni25/MgO during the CH4 activation process. The growth process of carbon deposition on the catalysts is also investigated in this work. The results indicate that the growth of carbon from C5 to C6 is difficult to proceed on Ni13/MgO due to size and active site limitation. Additionally, with an increase in particle size of the active metal, the absolute value of growth energy and average carbon binding energy of Cn increase on both Ni25/MgO and Ni37/MgO. It is proved that smaller particle size presents better resistance to carbon deposition. In the studied size range, Ni25/MgO is demonstrated to have greater catalytic activity and better resistance to carbon deposition.

4.
Phys Chem Chem Phys ; 25(27): 18322-18331, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37401191

RESUMO

The adsorption and growth mechanisms of Cn (n = 1-6) on different Cu-Ni surfaces are calculated by density functional theory (DFT). The results demonstrate that Cu doping affects the growth mechanism of the deposited carbon on the catalyst surface. Firstly, the addition of Cu weakens the interaction between Cn and the adsorbed surface, which is proved by the results of density of states (DOS) and partial density of states (PDOS). The weakening of the interaction allows Cn to perform at higher proportions of Cu-doped surfaces with a behavior consistent with that in the gas phase. A comparison of the growth energies of the different pathways of Cn in the gas phase shows that the main pathway for the Cn growth is chain-to-chain (CC). The CC reaction is also the main pathway for the growth of Cn on the surfaces, which is enhanced by the doping of Cu. In addition, analysis of the growth energy revealed that C2-C3 is the rate-determining step in the growth process of Cn. The doping of Cu enhances the growth energy of this step, contributing to the suppression of the growth of the deposited carbon on the adsorbed surface. Moreover, an average carbon binding energy shows that the doping of Cu on the Ni surface could weaken the structural stability of Cn, favoring the elimination of carbon deposited on the catalyst surface.

5.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679274

RESUMO

In order to enhance the electrochemical performance and mechanical properties of poly(ethylene oxide) (PEO)-based solid polymer electrolytes, composite solid electrolytes (CSE) composed of single-ion conducting polymer-modified SiO2, PEO and lithium salt were prepared and used in lithium-ion batteries in this work. The pyridyl disulfide terminated polymer (py-ss-PLiSSPSI) is synthesized through RAFT polymerization, then grafted onto SiO2 via thiol-disulfide exchange reaction between SiO2-SH and py-ss-PLiSSPSI. The chemical structure, surface morphology and elemental distribution of the as-prepared polymer and the PLiSSPSI-g-SiO2 nanoparticles have been investigated. Moreover, CSEs containing 2, 6, and 10 wt% PLiSSPSI-g-SiO2 nanoparticles (PLi-g-SiCSEs) are fabricated and characterized. The compatibility of the PLiSSPSI-g-SiO2 nanoparticles and the PEO can be effectively improved owing to the excellent dispersibility of the functionalized nanoparticles in the polymer matrix, which promotes the comprehensive performances of PLi-g-SiCSEs. The PLi-g-SiCSE-6 exhibits the highest ionic conductivity (0.22 mS·cm-1) at 60 °C, a large tLi+ of 0.77, a wider electrochemical window of 5.6 V and a rather good lithium plating/stripping performance at 60 °C, as well as superior mechanical properties. Hence, the CSEs containing single-ion conducting polymer modified nanoparticles are promising candidates for all-solid-state lithium-ion batteries.

6.
Front Oncol ; 12: 929233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033536

RESUMO

Glioma is the most common and fatal primary brain tumor in humans. A significant role for long non-coding RNA (lncRNA) in glioma is the regulation of gene expression and chromatin recombination, and immunotherapy is a promising cancer treatment. Therefore, it is necessary to identify necroptosis-related lncRNAs in glioma. In this study, we collected and evaluated the RNA-sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA, https://www.ncbi.nlm.nih.gov/, Data Release 32.0, March 29, 2022) glioma patients, and necroptosis-related lncRNAs were screened. Cox regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct a risk score formula to explore the different overall survival between high- and low-risk groups in TCGA. Gene Ontology (GO) and pathway enrichment analysis (Kyoto Encyclopedia of Genes and Genomes (KEGG)) were performed to identify the function of screened genes. The immune correlation analysis showed that various immune cells and pathways positively associated with a patient's risk score. Furthermore, the analysis of the tumor microenvironment indicated many immune cells and stromal cells in the tumor microenvironment of glioma patients. Six necroptosis-related lncRNAs were concerned to be involved in survival and adopted to construct the risk score formula. The results showed that patients with high-risk scores held poor survival in TCGA. Compared with current clinical data, the area under the curve (AUC) of different years suggested that the formula had better predictive power. We verified that necroptosis-related lncRNAs play a significant role in the occurrence and development of glioma, and the constructed risk model can reasonably predict the prognosis of glioma. The results of these studies added some valuable guidance to understanding glioma pathogenesis and treatment, and these necroptosis-related lncRNAs may be used as biomarkers and therapeutic targets for glioma prevention.

7.
Chin Neurosurg J ; 8(1): 12, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35585639

RESUMO

BACKGROUND: Low-grade gliomas (LGG) are WHO grade II tumors presenting as the most common primary malignant brain tumors in adults. Currently, LGG treatment involves either or a combination of surgery, radiation therapy, and chemotherapy. Despite the knowledge of constitutive genetic risk factors contributing to gliomas, the role of single genes as diagnostic and prognostic biomarkers is limited. The aim of the current study is to discover the predictive and prognostic genetic markers for LGG. METHODS: Transcriptome data and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. We first performed the tumor microenvironment (TME) survival analysis using the Kaplan-Meier method. An analysis was undertaken to screen for differentially expressed genes. The function of these genes was studied by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Following which a protein-protein interaction network (PPI) was constructed and visualized. Univariate and multivariate COX analyses were performed to obtain the probable prognostic genes. The key genes were selected by an intersection of core and prognostic genes. A clinical correlation analysis of single-gene expression was undertaken. GSEA enrichment analysis was performed to identify the function of key genes. Finally, a single gene-related correlation analysis was performed to identify the core immune cells involved in the development of LGG. RESULTS: A total of 529 transcriptome data and 515 clinical samples were obtained from the TCGA. Immune cells and stromal cells were found to be significantly increased in the LGG microenvironment. The top five core genes intersected with the top 38 prognostically relevant genes and two key genes were identified. Our analysis revealed that a high expression of HLA-DRA was associated with a poor prognosis of LGG. Correlation analysis of immune cells showed that HLA-DRA expression level was related to immune infiltration, positively related to macrophage M1 phenotype, and negatively related to activation of NK cells. CONCLUSIONS: HLA-DRA may be an independent prognostic indicator and an important biomarker for diagnosing and predicting survival in LGG patients. It may also be associated with the immune infiltration phenotype in LGG.

8.
Front Neurol ; 12: 738986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899563

RESUMO

Acute repetitive seizures or seizure clusters are common in epileptic patients. Seizure clusters are associated with a high risk of developing status epilepticus and increased morbidity and mortality. Seizure clusters are also recognizable in spontaneous recurrent seizures (SRS) that occur in animal models of epilepsy. The electrical kindling of a limbic structure is a commonly used model of temporal lobe epilepsy. Although classic kindling over the course of a few weeks does not generally induce SRS, extended kindling over the course of a few months can induce SRS in several animal species. SRS in kindled cats often occur in clusters, but the existence of seizure clusters in rodent models of extended kindling remains to be demonstrated. We explored the existence of seizure clusters in mice following extended hippocampal kindling. Adult male mice (C57BL/6) experienced twice daily hippocampal stimulations and underwent continuous 24-hour electroencephalogram (EEG)-video monitoring after ≥80 stimulations. SRS events were recognized by EEG discharges and associated motor seizures. Seizure clusters, defined as ≥4 seizures per cluster and intra-cluster inter-seizure intervals ≤ 120 min, were observed in 19 of the 20 kindled mice. Individual mice showed variable seizure clusters in terms of cluster incidence and circadian-like expression patterns. For clusters consisting of 4-7 seizures and intra-seizure intervals ≤ 20 min, no consistent changes in inter-seizure intervals, EEG discharge duration, or motor seizure severity scores were observed approaching cluster termination. These results suggested that seizure clustering represents a prominent feature of SRS in hippocampal kindled mice. We speculate that, despite experimental limitations and confounding factors, systemic homeostatic mechanisms that have yet to be explored may play an important role in governing the occurrence and termination of seizure clusters.

9.
Food Sci Nutr ; 9(7): 3701-3711, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262729

RESUMO

The technological applications utilized for tofu processing are diverse and complex, resulting in different yields and quality characteristics of tofu. The current study investigated the gel-forming principle of soybean protein coagulated using fermented yellow whey (FYW) to produce tofu. The effects of several processing parameters (soybean-to-water ratio, boiling temperature, boiling time, and FYW content) on the yield and protein content of tofu produced by the boiling-to-filtering method (BFM) were studied and optimized using response surface methodology. Results indicated significant differences in yield and protein content of tofu using different processing parameters, with FYW content being the most significant (p < .05). Optimum processing parameters of the BFM were found to be: soybean-to-water ratio of 1:5 (kg:kg), boiling time 6.1 min, boiling temperature 105°C, and FYW content of 26%. Under optimum conditions, tofu's yield and protein content were 235.17 g/100 g and 10.60%, respectively, and these were 47.93 g/100 g and 4.16% higher than those before optimization. This study provides practical technical support and a theoretical basis for the standardized industrial production of high-yield and high-protein tofu.

10.
Cereb Cortex Commun ; 2(1): tgab004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296153

RESUMO

Epilepsy is a chronic neurological disorder characterized by spontaneous recurrent seizures (SRS) and comorbidities. Kindling through repetitive brief stimulation of a limbic structure is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling over a period up to a few months can induce SRS, which may simulate slowly evolving epileptogenesis of temporal lobe epilepsy. Currently, electroencephalographic (EEG) features of SRS in rodent models of extended kindling remain to be detailed. We explored this using a mouse model of extended hippocampal kindling. Intracranial EEG recordings were made from the kindled hippocampus and unstimulated hippocampal, neocortical, piriform, entorhinal, or thalamic area in individual mice. Spontaneous EEG discharges with concurrent low-voltage fast onsets were observed from the two corresponding areas in nearly all SRS detected, irrespective of associated motor seizures. Examined in brain slices, epileptiform discharges were induced by alkaline artificial cerebrospinal fluid in the hippocampal CA3, piriform and entorhinal cortical areas of extended kindled mice but not control mice. Together, these in vivo and in vitro observations suggest that the epileptic activity involving a macroscopic network may generate concurrent discharges in forebrain areas and initiate SRS in hippocampally kindled mice.

11.
BMC Neurosci ; 22(1): 46, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301200

RESUMO

BACKGROUND: Rodent brain slices-particularly hippocampal slices-are widely used in experimental investigations of epileptiform activity. Oxygenated artificial cerebrospinal fluid (ACSF) is used to maintain slices in vitro. Physiological or standard ACSF containing 3-3.5 mM K+, 1-2 mM Mg2+, and 1-3 mM Ca2+ generally does not induce population epileptiform activity, which can be induced by ACSF with high K+ (8-10 mM), low Mg2+, or low Ca2+ alone or in combination. While low-Mg2+ ACSF without intentionally added Mg salt but with contaminating Mg2+ (≤ 50-80 µM) from other salts can induce robust epileptiform activity in slices, it is unclear whether such epileptiform activity can be achieved using ACSF with moderately decreased Mg2+. To explore this issue, we examined the effects of moderately modified (m)ACSF with 0.8 mM Mg2+, 1.3 mM Ca2+, and 5.7 mM K+ on induction of epileptiform discharges in mouse hippocampal slices. RESULTS: Hippocampal slices were prepared from young (21-28 days old), middle-aged (13-14 months old), and aged (24-26 months old) C57/BL6 mice. Conventional thin (0.4 mm) and thick (0.6 mm) slices were obtained using a vibratome and pretreated with mACSF at 35-36 °C for 1 h prior to recordings. During perfusion with mACSF at 35-36 °C, spontaneous or self-sustained epileptiform field potentials following high-frequency stimulation were frequently recorded in slices pretreated with mACSF but not in those without the pretreatment. Seizure-like ictal discharges were more common in thick slices than in thin slices. CONCLUSIONS: Prolonged exposure to mACSF by pretreatment and subsequent perfusion can induce epileptiform field potentials in mouse hippocampal slices.


Assuntos
Cálcio/metabolismo , Líquido Extracelular/metabolismo , Hipocampo/metabolismo , Magnésio/metabolismo , Potássio/metabolismo , Convulsões/metabolismo , Fatores Etários , Animais , Cálcio/toxicidade , Líquido Extracelular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Magnésio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Potássio/toxicidade , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
12.
Nano Lett ; 21(1): 597-604, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258607

RESUMO

Although lead halide perovskites are demonstrated to be promising photocatalysts for hydrogen evolution from hydrogen halide splitting, it still remains challenging to fabricate efficient and stable catalysts. Here MoS2 nanoflowers with abundant active sites are assembled with methylammonium lead iodide (MAPbI3) microcrystals to form a new heterostructure. Its hydrogen evolution rate can reach up to about 30 000 µmol g-1 h-1, which is more than 1000-fold higher than pristine MAPbI3 under visible light irradiation (λ ≥ 420 nm). Importantly, the solar HI splitting efficiency reaches 7.35%, one of the highest efficiencies so far. The introduction of MoS2 with proper band alignment and unsaturated species can efficiently promote the charge separation and afford more active sites for H2 production. This finding not only provides a highly efficient and stable photocatalyst for hydrogen evolution but also offers a useful modification strategy on lead halide perovskites.

13.
ACS Appl Mater Interfaces ; 12(8): 9851-9857, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003971

RESUMO

Improving the stability of perovskite quantum dots and adjusting their optical properties are essential for their application in advanced optoelectronic equipment. We provide a simple synthetic method to hybridize perovskite quantum dots and metal-organic frameworks (MOFs) into a polymer matrix. The hybrid material is made by encapsulating perovskite CH3NH3PbBr3 quantum dots in lanthanide-based metal-organic frameworks. A series of lanthanide-based metal-organic frameworks (LnMOFs), namely, [Ln(tpob)(DMF)(H2O)]n (Lntpob, Ln = Nd, Sm, Eu, Gd, Tb, Dy, H3tpob = 1,3,5-tris(4-carbonylphenyloxy)benzene), have been synthesized under solvothermal conditions and fully characterized. Lntpobs display a three-dimensional (3D) pcu network with central-symmetric [Eu2(COO)4] structural building units (SBUs) linked by one-dimensional (1D) chains. CH3NH3PbBr3@Eutpob hybrids were developed through a three-step process, in which the precursor PbBr2@Eutpob was formed by immersing the Eutpob crystal synthesized in the first step into a PbBr2 solution; then the composite materials could form quickly when CH3NH3Br was added to the precursor. Therefore, the hybrid composite material exhibits luminescent properties related to the excitation wavelength in the form of powders or thin films. In addition, the photoluminescence of the CH3NH3PbBr3@Eutpob composite can be improved and maintained for a long time after it is introduced into the poly(methyl methacrylate) (PMMA) matrix. Moreover, the emission peak based on the perovskite quantum dots can still maintain about 85% of the original intensity after being left for 30 days. Also, the obtained PMMA films can achieve tunable emission from red to green.

14.
Sci Rep ; 10(1): 709, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959797

RESUMO

Recent evidence suggests that SNARE fusion machinery play critical roles in postsynaptic neurotransmitter receptor trafficking, which is essential for synaptic plasticity. However, the key SNAREs involved remain highly controversial; syntaxin-3 and syntaxin-4 are leading candidates for the syntaxin isoform underlying postsynaptic plasticity. In a previous study, we showed that pyramidal-neuron specific conditional knockout (cKO) of syntaxin-4 significantly reduces basal transmission, synaptic plasticity and impairs postsynaptic receptor trafficking. However, this does not exclude a role for syntaxin-3 in such processes. Here, we generated and analyzed syntaxin-3 cKO mice. Extracellular field recordings in hippocampal slices showed that syntaxin-3 cKO did not exhibit significant changes in CA1 basal neurotransmission or in paired-pulse ratios. Importantly, there were no observed differences during LTP in comparison to control mice. Syntaxin-3 cKO mice performed similarly as the controls in spatial and contextual learning tasks. Consistent with the minimal effects of syntaxin-3 cKO, syntaxin-3 mRNA level was very low in hippocampal and cortex pyramidal neurons, but strongly expressed in the corpus callosum and caudate axon fibers. Together, our data suggest that syntaxin-3 is dispensable for hippocampal basal neurotransmission and synaptic plasticity, and further supports the notion that syntaxin-4 is the major isoform mediating these processes.


Assuntos
Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Proteínas Qa-SNARE/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/metabolismo , Corpo Caloso/metabolismo , Expressão Gênica , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Camundongos Knockout , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , RNA Mensageiro/metabolismo
15.
Front Cell Neurosci ; 14: 593840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551747

RESUMO

Bilateral interconnections through the hippocampal commissure play important roles in synchronizing or spreading hippocampal seizure activities. Intact hippocampi or bilateral hippocampal slices have been isolated from neonatal or immature rats (6-7 or 12-21 days old, respectively) and the mechanisms underlying the bilateral synchrony of hippocampal epileptiform activities have been investigated. However, the feasibility of examining bilateral epileptiform activities of more developed hippocampal circuitry in vitro remains to be explored. For this, we prepared bilateral hippocampal slices from C57 black mice, a strain commonly used in neuroscience and for genetic/molecular modifications. Young mice (21-24-day-old) were used in most experiments. A 600-µm-thick slice was obtained from each mouse by horizontal vibratome sectioning. Bilateral dorsal hippocampal and connecting dorsal hippocampal commissure (DHC) tissues were preserved in the slice and extrahippocampal tissues were removed. Slices were recorded in a submerged chamber mainly at a room temperature (21-22°C). Bilateral CA3 areas were monitored by extracellular recordings, and unilateral electrical stimulation was used to elicit CA3 synaptic field potentials. The unilateral stimulation could elicit population spikes in the contralateral CA3 area. These contralateral spikes were attenuated by inhibiting synaptic transmission with cobalt-containing medium and were abolished when a cut was made at the DHC. Self-sustained and bilaterally correlated epileptiform potentials were observed following application of 4-aminopyradine and became independent after the DHC cut. Bilateral hippocampal activities were detectable in some slices of adult mice and/or at 35-36°C, but with smaller amplitudes and variable waveforms compared to those observed from slices of young mice and at the room temperature. Together, these observations suggested that examining bilateral epileptiform activities in hippocampal slices of young mice is feasible. The weaknesses and limitations of this preparation and our experimentation are discussed.

16.
Inorg Chem ; 58(22): 15118-15125, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702139

RESUMO

Due to the high carcinogenicity and bioaccumulation effects of dichromate ions in the human body, sensitive and rapid detection of Cr2O72- ions is necessary. Herein, two lanthanide coordination polymers based on a linear dicarboxylic acid ligand, named {Ln(cpon)(Hcpon)(H2O)3}n [Ln = Tb, Tbcpon; Eu, Eucpon; H2 cpon = 5-(4-carboxy-phenoxy)-nicotinic acid], have been successfully synthesized. These two isostructural compounds contain one-dimensional zigzag chains that consist of uncoordinated carboxyl groups and pyridine groups in the framework, and the one-dimensional chains can further form a three-dimensional supramolecular stacking structure by intermolecular interaction. Both Tbcpon and Eucpon show good luminescence performance and high stability. Tbcpon exhibits a good ability to sense Cr2O72- ions in aqueous solution. Moreover, the composite film material composed of Tbcpon and poly(methyl methacrylate) (PMMA) exhibits superior luminescence properties compared to those of pure Tbcpon. The Tbcpon-PMMA film exhibits an excellent ability to recognize Cr2O72- ions with high selectivity and a low detection limit of 5.6 ppb, which is much lower than the maximum contamination standard of 100 ppb in drinking water specified by the U.S. Environmental Protection Agency. Furthermore, the Tbcpon-PMMA film shows good recyclability for more than five cycles and anti-interference ability. After the introduction of the slightly soluble polymer poly(vinyl alcohol) (PVA), the Tbcpon-PVA composite film can effectively detect Cr2O72- ions in as little as 1 min. These composite films could be potentially used as test strips for trace detection and rapid detection of Cr2O72- ions in aqueous solution.

17.
Front Pharmacol ; 10: 1077, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611787

RESUMO

Temporal lobe epilepsy is the most common and often drug-resistant type of epilepsy in the adult and aging populations and has great diversity in etiology, electro-clinical manifestations, and comorbidities. Kindling through repeated brief stimulation of limbic structures is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling can induce spontaneous recurrent seizures in several animal species. However, kindling studies in middle-aged, aging, or aged animals remain scarce, and currently, little is known about kindling-induced behavioral changes in middle-aged/aging animals. We therefore attempted to provide more information in this area using a mouse model of extended hippocampal kindling. We conducted experiments in middle-aged mice (C57BL/6, male, 12-14 months of age) to model new-onset epilepsy in adult/aging populations. Mice experienced twice daily hippocampal stimulations or handling manipulations for 60-70 days and then underwent continuous electroencephalogram (EEG)-video monitoring to detect spontaneous recurrent seizures. Extended kindled mice consistently exhibited spontaneous recurrent seizures with mean incidences of 6-7 events per day, and these seizures featured EEG discharges and corresponding convulsions. The handling control mice showed neither seizure nor aberrant EEG activity. The two groups of mice underwent the Morris water maze test of spatial learning and memory 1-2 weeks after termination of the kindling stimulation or handling manipulation. During visible platform trials, the kindled mice took a longer distance and required more time than the control mice to find the platform. During hidden platform trials, the kindled mice showed no improvement over 5-day trials in finding the platform whereas the control mice improved significantly. During probe tests in which the hidden platform was removed, the kindled mice spent less time than the controls searching in the correct platform location. There were no significant differences between the kindled and control mice with respect to swim speed or total locomotor activity in an open-field test. Together, these observations indicate that the extended kindled mice with spontaneous recurrent seizures are impaired in spatial learning and memory as assessed by the Morris water maze test. We postulate that the extended hippocampal kindling in middle-aged mice may help explore epileptogenic mechanisms and comorbidities potentially relevant to new-onset temporal lobe epilepsy in adult and aging patients. Limitations and confounds of our present experiments are discussed to improve future examinations of epileptic comorbidities in extended kindled mice.

18.
ACS Nano ; 13(5): 5366-5374, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30986030

RESUMO

Fabricating CsPbX3-based heterostructures has proven to be a feasible way to tune their photophysical properties. Here, we report the successful fabrication of Janus CsPbX3/ZrO2 heterostructure nanocrystals (NCs), in which each CsPbX3 NC is partially covered by ZrO2. According to the band alignment, CsPbBr3/ZrO2 and CsPbI3/ZrO2 can be indexed as type I and type II composites, respectively. The type I composites display great enhancement in photoluminescence quantum yield (from 63 to 90%) and photoluminescence lifetime (from 12.9 to 66.1 ns) because of the charge carrier confinement and passivation effect provided by ZrO2. In contrast, the type II composites can be used in photocatalytic reduction of CO2 because electrons and holes are effectively separated and accumulated in ZrO2 and CsPbI3, respectively, under irradiation. Janus CsPbBr3/ZrO2 NCs showed a stability much higher than that of pristine CsPbBr3 against polar solvent treatment. A stable and highly efficient light-emitting device with luminous efficiency up to 55 lm W-1 is fabricated by using CsPbBr3/ZrO2 NCs as the green light source. This work may not only enrich the family of surface-passivated perovskite materials but also provide a good example for the rational design of specific composites in the metal halide perovskite field.

19.
Langmuir ; 33(44): 12689-12696, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29032682

RESUMO

Recently, all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) have drawn wide attention because of their excellent optoelectronic properties and potential applications. However, one of the most significant challenges of such NCs is their low stability against protonic solvents. In this work, we demonstrate that by incorporating a highly branched capping ligand, trioctylphosphine oxide (TOPO), into the traditional oleic acid/oleylamine system, monodisperse CsPbX3 NCs with excellent optoelectronic properties can be achieved at elevated temperatures (up to 260 °C). The size of such NCs can be varied in a relatively wide range. The capping of TOPO on NCs has been verified through Fourier transform infrared spectroscopy measurement. More importantly, the presence of TOPO can dramatically improve the stability of CsPbX3 NCs against ethanol treatment. After ethanol treatment for 100 min, the emission intensity of the TOPO-capped sample dropped only 5%, whereas that of non-TOPO-capped NCs dropped up to 86%. This work may shed some light on the preparation and application of CsPbX3 NCs with higher stability.

20.
Sci Rep ; 7(1): 6310, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740079

RESUMO

Traditional Chinese medicine (TCM) treatment can be valuable therapeutic strategies. However, the active components and action mechanisms that account for its therapeutic effects remain elusive. Based on the hypothesis that the components of a formula which exert effect would be measurable in target tissue, a target tissue metabolomics-based strategy was proposed for screening of antipyretic components in Qingkaikling injection (QKLI). First, we detected the components of QKLI which could reach its target tissue (hypothalamus) by determining the hypothalamus microdialysate and discovered that only baicalin and geniposide could be detected. Then, by conducting hypothalamus metabolomics studies, 14 metabolites were screened as the potential biomarkers that related to the antipyretic mechanisms of QKLI and were used as its pharmacodynamic surrogate indices. Subsequently, the dynamic concentration of baicalin and geniposide in hypothalamus microdialysates and biomarkers in hypothalamus were measured and correlated with each other. The results indicated that only baicalin shown a good correlation with these biomarkers. Finally, a network pharmacology approach was established to validate the antipyretic activity of baicalin and the results elucidated its antipyretic mechanisms as well. The integrated strategy proposed here provided a powerful means for identifying active components and mechanisms contributing to pharmacological effects of TCM.


Assuntos
Antipiréticos/administração & dosagem , Medicamentos de Ervas Chinesas/química , Hipotálamo/química , Metabolômica/métodos , Administração Intravenosa , Animais , Antipiréticos/farmacocinética , Flavonoides/análise , Iridoides/análise , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...