Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(31): 17620-17631, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32720967

RESUMO

An intrinsic self-healing polyurethane (PU) elastomer was synthesized in our previous work. In this work, three-dimensional (3D) micro-crack models based on experimental samples were further introduced to investigate their self-healing behavior, mechanism, and temperature dependence by molecular dynamics (MD) simulations. In particular, the number, type, strength, and lifetime of hydrogen bonds as well as the microscopic behavior of molecular diffusion in the self-healing process were investigated. It was found that the self-healing capacity of PU mainly results from intermolecular electrostatic interactions, and the hydrogen bond plays a key role in electrostatic interactions. There is an optimum ratio of soft and hard segments at which the number of hydrogen bonds is appropriate and the self-healing capacity is optimum. Besides, the temperature has an optimal value at which the self-healing rate of PU is the fastest. The exchanges of hydrogen bonds, which endowed PU with self-healing capacity, were further revealed intuitively. We found that the exchanges of hydrogen bonds are reversible and more likely to occur on the urethane groups. This study deepened the understanding of the self-healing character of PU at the molecular level.

2.
RSC Adv ; 9(68): 40062-40071, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541406

RESUMO

Based on our previous studies on the modification of in-chain styrene butadiene rubber (SBR) using 3-mercaptopropionic acid as well as its composites filled with silica, we further constructed two types of models (amorphous and layered) to investigate the temperature dependence of the interfacial bonding characteristics of silica/SBR composites via molecular dynamics (MD) simulation. The competing effects of rubber-rubber interactions and filler-rubber interactions were identified, and the relationship between the competing effects and the temperature was determined. Besides this, the effect of temperature on the mobility and distribution of SBR chains on the surface of silica was investigated. It was found that the stronger the interfacial interactions, the less sensitive the motion of SBR chains to temperature. Finally, the number and length of hydrogen bonds as a function of temperature were analyzed. These simulated results deepened the understanding of interface temperature dependence of the silica/SBR composites and gave a molecular level explanation for the existence of an optimum modifier content (14.2 wt%) that is temperature independent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...