Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(2): e202300940, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100510

RESUMO

Circularly polarized luminescence (CPL) materials are promising candidates for future display technology. However, such highly efficient emitters suffer from the issues of difficult chiral separation and low photoluminescence quantum yield (PLQY). In this work, the chiral 4,4'-biphenanthrene-3,3'-diol (BIPOL) unit was introduced into a thermally activated delayed fluorescence (TADF) framework for the first time. We presented two series of enantiomers, R/S-o-DCzBPNCN and R/S-p-DCzBPNCN, and the synthesis of enantiopure BIPOL can be prepared via normal column chromatography. Notably, o-DCzBPNCN showed narrow singlet-triplet gap of 0.05 eV, efficient TADF, and high PLQYs of 82 % in doped films. In addition, R/S-o-DCzBPNCN exhibited high luminescence dissymmetry factor (gPL ) values of -1.94×10-2 /+1.91×10-2 in doped films. The strategy of BIPOL introduction offers a new approach to organic emitters with stereospecific synthesis, TADF, and chiroptical properties.

2.
Sci Adv ; 2(2): e1500875, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26989772

RESUMO

Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

3.
Nature ; 520(7548): 518-21, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25822792

RESUMO

Most molecular clouds are filamentary or elongated. For those forming low-mass stars (<8 solar masses), the competition between self-gravity and turbulent pressure along the dynamically dominant intercloud magnetic field (10 to 100 parsecs) shapes the clouds to be elongated either perpendicularly or parallel to the fields. A recent study also suggested that on the scales of 0.1 to 0.01 parsecs, such fields are dynamically important within cloud cores forming massive stars (>8 solar masses). But whether the core field morphologies are inherited from the intercloud medium or governed by cloud turbulence is unknown, as is the effect of magnetic fields on cloud fragmentation at scales of 10 to 0.1 parsecs. Here we report magnetic-field maps inferred from polarimetric observations of NGC 6334, a region forming massive stars, on the 100 to 0.01 parsec scale. NGC 6334 hosts young star-forming sites where fields are not severely affected by stellar feedback, and their directions do not change much over the entire scale range. This means that the fields are dynamically important. The ordered fields lead to a self-similar gas fragmentation: at all scales, there exist elongated gas structures nearly perpendicular to the fields. Many gas elongations have density peaks near the ends, which symmetrically pinch the fields. The field strength is proportional to the 0.4th power of the density, which is an indication of anisotropic gas contractions along the field. We conclude that magnetic fields have a crucial role in the fragmentation of NGC 6334.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...