Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 359(1): 215-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488918

RESUMO

Statistical analysis was performed on physicochemical descriptors of ∼250 drugs known to interact with one or more SLC22 "drug" transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by application of machine-learning methods and wet laboratory testing of novel predictions. In addition to molecular charge, organic anion transporters (OATs) were found to prefer interacting with planar structures, whereas organic cation transporters (OCTs) interact with more three-dimensional structures (i.e., greater SP3 character). Moreover, compared with OAT1 ligands, OAT3 ligands possess more acyclic tetravalent bonds and have a more zwitterionic/cationic character. In contrast, OCT1 and OCT2 ligands were not clearly distinquishable form one another by the methods employed. Multiple pharmacophore models were generated on the basis of the drugs and, consistent with the machine-learning analyses, one unique pharmacophore created from ligands of OAT3 possessed cationic properties similar to OCT ligands; this was confirmed by quantitative atomic property field analysis. Virtual screening with this pharmacophore, followed by transport assays, identified several cationic drugs that selectively interact with OAT3 but not OAT1. Although the present analysis may be somewhat limited by the need to rely largely on inhibition data for modeling, wet laboratory/in vitro transport studies, as well as analysis of drug/metabolite handling in Oat and Oct knockout animals, support the general validity of the approach-which can also be applied to other SLC and ATP binding cassette drug transporters. This may make it possible to predict the molecular properties of a drug or metabolite necessary for interaction with the transporter(s), thereby enabling better prediction of drug-drug interactions and drug-metabolite interactions. Furthermore, understanding the overlapping specificities of OATs and OCTs in the context of dynamic transporter tissue expression patterns should help predict net flux in a particular tissue of anionic, cationic, and zwitterionic molecules in normal and pathophysiological states.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteína 1 Transportadora de Ânions Orgânicos/química , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/química , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/metabolismo , Preparações Farmacêuticas/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
2.
J Biol Chem ; 291(37): 19474-86, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27440044

RESUMO

There has been a recent interest in the broader physiological importance of multispecific "drug" transporters of the SLC and ABC transporter families. Here, a novel multi-tiered systems biology approach was used to predict metabolites and signaling molecules potentially affected by the in vivo deletion of organic anion transporter 1 (Oat1, Slc22a6, originally NKT), a major kidney-expressed drug transporter. Validation of some predictions in wet-lab assays, together with re-evaluation of existing transport and knock-out metabolomics data, generated an experimentally validated, confidence ranked set of OAT1-interacting endogenous compounds enabling construction of an "OAT1-centered metabolic interaction network." Pathway and enrichment analysis indicated an important role for OAT1 in metabolism involving: the TCA cycle, tryptophan and other amino acids, fatty acids, prostaglandins, cyclic nucleotides, odorants, polyamines, and vitamins. The partly validated reconstructed network is also consistent with a major role for OAT1 in modulating metabolic and signaling pathways involving uric acid, gut microbiome products, and so-called uremic toxins accumulating in chronic kidney disease. Together, the findings are compatible with the hypothesized role of drug transporters in remote inter-organ and inter-organismal communication: The Remote Sensing and Signaling Hypothesis (Nigam, S. K. (2015) Nat. Rev. Drug Disc. 14, 29). The fact that OAT1 can affect many systemic biological pathways suggests that drug-metabolite interactions need to be considered beyond simple competition for the drug transporter itself and may explain aspects of drug-induced metabolic syndrome. Our approach should provide novel mechanistic insights into the role of OAT1 and other drug transporters implicated in metabolic diseases like gout, diabetes, and chronic kidney disease.


Assuntos
Metaboloma/fisiologia , Modelos Biológicos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Animais , Camundongos
3.
Drug Metab Dispos ; 43(12): 1855-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26358290

RESUMO

The multispecific organic anion drug transporters OAT6 (SLC22A20) and OAT1 (SLC22A6) are expressed in nasal epithelial cells and both can bind odorants. Sequence analysis of OAT6 revealed an evolutionarily conserved 79-amino acid (AA) fragment present not only in OAT6 but also in other SLC22 transporters, such as the organic anion transporter (OAT), organic carnitine transporter (OCTN), and organic cation transporter (OCT) subfamilies. A similar fragment is also conserved in some odorant receptors (ORs) in both humans and rodents. This fragment is located in regions believed to be important for ligand/substrate preference and recognition in both classes of proteins, raising the possibility that it may be part of a potential common ligand/substrate recognition site in certain ORs and SLC22 transporters. In silico screening of an odorant database containing known OR ligands with a pharmacophore hypothesis (generated from a set of odorants known to bind OAT6 and/or OAT1), followed by in vitro uptake assays in transfected cells, identified OR ligands capable of inhibiting OAT6- and/or OAT1-mediated transport, albeit with different affinities. The conservation of the AA fragments between these two different classes of proteins, together with their coexpression in olfactory as well as other tissues, suggests the possibility that ORs and SLC22 transporters function in concert, and raises the question as to whether these transporters function in remote sensing and signaling and/or as transceptors.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Receptores Odorantes/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Caprilatos/metabolismo , Caprilatos/farmacologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/genética , Ratos , Receptores Odorantes/genética
4.
Biochem Biophys Rep ; 3: 51-61, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251846

RESUMO

URAT1 (slc22a12) was identified as the transporter responsible for renal reabsorption of the medically important compound, uric acid. However, subsequent studies have indicated that other transporters make contributions to this process, and that URAT1 transports other organic anions besides urate (including several in common with the closely related multi-specific renal organic anion transporters, OAT1 (slc22a6) and OAT3 (slc22a8)). These findings raise the possibility that urate transport is not the sole physiological function of URAT1. We previously characterized mice null for the murine ortholog of URAT1 (mURAT1; previously cloned as RST), finding a relatively modest decrement in urate reabsorptive capacity. Nevertheless, there were shifts in the plasma and urinary concentrations of multiple small molecules, suggesting significant metabolic changes in the knockouts. Although these molecules remain unidentified, here we have computationally delineated the biochemical networks consistent with transcriptomic data from the null mice. These analyses suggest alterations in the handling of not only urate but also other putative URAT1 substrates comprising intermediates in nucleotide, carbohydrate, and steroid metabolism. Moreover, the analyses indicate changes in multiple other pathways, including those relating to the metabolism of glycosaminoglycans, methionine, and coenzyme A, possibly reflecting downstream effects of URAT1 loss. Taken together with the available substrate and metabolomic data for the other OATs, our findings suggest that the transport and biochemical functions of URAT1 overlap those of OAT1 and OAT3, and could contribute to our understanding of the relationship between uric acid and the various metabolic disorders to which it has been linked.

5.
Physiol Rev ; 95(1): 83-123, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25540139

RESUMO

The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.


Assuntos
Regulação da Expressão Gênica/fisiologia , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Humanos , Transportadores de Ânions Orgânicos/química , Distribuição Tecidual
6.
Drug Metab Dispos ; 41(10): 1825-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23920220

RESUMO

Multispecific drug transporters of the solute carrier and ATP-binding cassette families are highly conserved through evolution, but their true physiologic role remains unclear. Analyses of the organic anion transporter 3 (OAT3; encoded by Slc22a8/Oat3, originally Roct) knockout mouse have confirmed its critical role in the renal handling of common drugs (e.g., antibiotics, antivirals, diuretics) and toxins. Previous targeted metabolomics of the knockout of the closely related Oat1 have demonstrated a central metabolic role, but the same approach with Oat3 failed to reveal a similar set of endogenous substrates. Nevertheless, the Oat3 knockout is the only Oat described so far with a physiologically significant phenotype, suggesting the disturbance of metabolic or signaling pathways. Here we analyzed global gene expression in Oat3 knockout tissue, which implicated OAT3 in phase I and phase II metabolism (drug metabolizing enzymes or DMEs), as well as signaling pathways. Metabolic reconstruction with the recently developed "mouse Recon1" supported the involvement of Oat3 in the aforementioned pathways. Untargeted metabolomics were used to determine whether the predicted metabolic alterations could be confirmed. Many significant changes were observed; several metabolites were tested for direct interaction with mOAT3, whereas others were supported by published data. Oat3 thus appears critical for the handling of phase I (hydroxylation) and phase II (glucuronidation) metabolites. Oat3 also plays a role in bioenergetic pathways (e.g., the tricarboxylic acid cycle), as well as those involving vitamins (e.g., folate), steroids, prostaglandins, gut microbiome products, uremic toxins, cyclic nucleotides, amino acids, glycans, and possibly hyaluronic acid. The data seemingly consistent with the Remote Sensing and Signaling Hypothesis (Ahn and Nigam, 2009; Wu et al., 2011), also suggests that Oat3 is essential for the handling of dietary flavonoids and antioxidants.


Assuntos
Transporte Biológico/genética , Inativação Metabólica/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transdução de Sinais/genética , Animais , Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Opt Express ; 16(6): 4192-205, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18542515

RESUMO

We developed a technique to simultaneously measure self-phase modulation and two-photon absorption using shaped femtosecond laser pulses. In the conventional Z-scan measurement technique the amount of nonlinearity is determined by measuring the change in shape and intensity of a transmitted laser beam. In contrast, our method sensitively measures nonlinearity-induced changes in the pulse spectrum. In this work we demonstrate the technique in nonlinear absorptive and dispersive samples, quantify the obtained signal, and compare the measurements with traditional Z-scans. This technique is capable of measuring these nonlinearities in highly scattering samples.


Assuntos
Modelos Teóricos , Óptica e Fotônica , Processamento de Sinais Assistido por Computador , Simulação por Computador , Fótons , Espalhamento de Radiação
8.
Opt Lett ; 33(3): 219-21, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18246134

RESUMO

We use phase-sensitive detection of spectral hole refilling to demonstrate strong novel intrinsic nonlinear signatures of neuronal activation in hippocampal brain slices. The ability to gain access to this fundamentally new intrinsic contrast with modest power levels suggests a new approach to in vivo neural imaging. We expect that we can extrapolate our method to high spatial and temporal resolution in deep tissue while retaining the noninvasive character.


Assuntos
Neurônios/fisiologia , Óptica e Fotônica , Processamento de Sinais Assistido por Computador , Animais , Encéfalo/patologia , Calibragem , Diagnóstico por Imagem , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Lasers , Modelos Biológicos , Modelos Neurológicos , Ratos , Espalhamento de Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...